Functional coatings for implants

20 April 2011
Written by Gnezdenkov S.V., Sharkeev Yu.P., Sinebryukhov S.L., Khrisanforova O.A., Legostaeva E.V., Zavidnaya A.G., Puz A.V., Khlusov I.A.

  UDK: 661.882.27:666.651.4:616‑089.843 | Pages: 12–19 | Read full textDownload PDF 


The paper reviews results of the scientific researches on the surface modification of tita‑nium alloys used in implant surgery, considering a specific example of corrosion‑resistant bioinert composite coatings made of titanium nickelide and hydroxyapatite‑containing bioactive calcium‑phosphate layers, and titanium‑BT1‑0. The authors have modified the titanium alloy surfaces by plasma electrolytic oxidation method. The production conditions determine the planned functions of coatings. As reported, the task-specific selection of electrolytes used to produce coatings allows to obtain calcium‑phosphate layers on the surface of technical grade titanium ВТ1‑0. Their biological activity is confirmed by in vivo and in vitro experiments. The authors offer promising prospects for applying plasma electrolytic oxidation method in an effort to produce on the titanium nickelide the bioinert composite coatings known to improve its morphological structure and electrochemical prop‑erties, thus considerably decreasing ingress of nickel ions into organism.

Links to authors:

S.V. Gnezdenkov, S.L. Sinebryukhov, O.A. Khrisanforova, A.G. Zavidnaya, A.V. Puz
Institute of Chemistry (159 100 Year Anniversary of Vladivostok Av. Vladivostok 690022 Russian Federation),
Yu.P. Sharkeev, E.V. Legostaeva
Institute of Strength Physics and Materials Science of the Siberian Branch of Russian Academy of Sciences (2/4 Akademicheskiy Av. Tomsk 634021 Russian Federation),
I.A. Khlusov
Federal State Institution ‘‘Russian Ilizarov Scientific Centre‘ Restorative Traumatology And rthopaedics’’ of Ministry of Health and Social Development of the Russian Federation (6 Ulyanova St. Kurgan 640014 Russian Federation),
I.A. Khlusov
REC ‘Bio-compatible Materials and Biomedical Engineering’ of Tomsk Polytechnic University and Siberian State Medical University (2 Moskovskiy Tr. Tomsk 634050 Russian Federation)

  1. Gnedenkov S.V. Hrisanfova O.A., Sinebrjuhov S.L. et.al. A pro‑
    cess for preparing the biocompatible fluoropolymer coatings on
    the base of products from nitinol. Patent No.. 2316357. Russian
    Federation, 10.02.2008.
    2. Gnedenkov S.V., Sinebrjuhov S.L., Mashtaljar D.V. et.al. The
    compositional polymer protective coatings on titanium, Korrozija: materialy, zawita. 2007. No. 7. P. 37–42.
    3. Gnedenkov S.V., Sinebrjuhov S.L., Mashtaljar D.V. et.al. The
    formation of compositional polymer layers on metals and al‑
    loys, Vestnik Dalnevostochnogo otdelenija RAN. 2009. No.. 2. P.
    4. Gnedenkov S.V., Hrisanfova O.A., Ignat›eva L.N., et.al. Compl‑
    exation of aluminum with salts of tartaric acid, Zhurnal neorganicheskoj himii. 2005. Vol. 50, No.. 12. P. 2050–2058.
    5. Gnedenkov S.V., Hrisanfova O.A., Sinebrjuhov S.L. et.al. The
    compositional protective coatings on the surface of NiTi, Korrozija: materialy, zawita. 2007. No.. 2. P. 20–25.
    6. Gnedenkov S.V., Hrisanfova O.A., Sinebrjuhov S.L. et al. Method
    of application for calcium‑phosphate coatings on implants made
    from titanium and its alloys. Patent No.. 2348744. Russian Fed‑
    eration, 10.03.2009.
    7. Gnedenkov S.V., Hrisanfova O.A., Sinebrjuhov S.L. et.al. The
    formation of the containing hydroxyapatite surface layers on
    titanium, Korrozija: materialy, zawita. 2008. No.. 8. P. 24–30.
    8. Gnedenkov S.V., Hrisanfova O.A., Sinebrjuhov S.L., Puz A.V.
    A method of producing protective coatings on the prod‑
    ucts from nitinol. Patent No.. 2319797. Russian Federation,
    9. Gnedenkov S.V., Sharkeev Ju.P., Sinebrjuhov S.L. et al. Bioactive
    calcium phosphate coatings on titanium, Vestnik DVO RAN.
    2010. No.. 5. P. 47–57.
    10. Gordienko P.S., Gnedenkov S.V. Microarc oxidation of titanium
    and its alloys. Vladivostok: Dalnauka, 1997. 198 p.
    11. Legostaeva E.V., Sharkeev Ju.P., Tolkacheva T.V. et al. Bioactive
    coating on a titanium implant and method thereof. Patent No..
    2385740. Rossijskaja Federacija, 10.04.2010.
    12. Putljaev V.I. Modern Bio‑ceramic materials, Sorosovskij
    obrazovatel’nyj zhurnal. 2004. Vol. 8, No.. 1. P. 44–50.
    13. Hrisanfova O.A., Volkova L.M., Gnedenkov S.V., et.al. Film
    synthesis of chemical compounds on titanium in microplasma
    discharges, Zhurnal neorganicheskoj himii. 1995. Vol. 40, No.. 4.
    P. 558–562.
    14. Gnedenkov S. V., Sinebryukhov S. L., and Sergienko V. I. Electro‑
    chemical impedance simulation of a metal oxide heterostructure/
    electrolyte interface, A Review Russian Journal of Electrochemistry.
    2006,. Vol. 42, No. 3. P. 197–211.
    15. Gnedenkov S.V., Khrisanphova O.A., Zavidnaya A.G., et al. Pro‑
    duction of hard and heat‑resistant coatings on aluminium using
    a plasma micro‑discharge, Surface and Coatings Technology. 2000.
    Vol. 123. P. 24–28.
    16. Gnedenkov S.V., Sinebryukhov S.L. Composite polymer con‑
    taining coatings on the surface of metals and alloy, Composite
    Interfaces. 2009. Vol. 16, No. 4–6. P. 387–405.
    17. Gnedenkov S.V., Sinebryukhov S.L., Khrisanfova O.A., Scoroboga‑
    tova T.M. Electrochemical and morphological features of the
    anticorrosion films obtained on the titanium surface, Surface
    Engineering. 2005. Vol. 2, No. 2А. P. 107–114.
    18. Gnedenkov S.V., Sinebryukhov S.L., Mashtalyar D.V. at al. Com‑
    posite polymer‑containing protective layers on titanium, Protection of Metals. 2008. Vol. 44, No. 7. P. 67–72.
    19. Han Y., Hong S.H., Xu K.W. Structure and in vitro bioactivity of
    titania‑based films by micro‑arc oxidation, Surface and Coatings
    Technology. 2003. Vol. 168. P. 249–258.
    20. Hanawa T., Kon M., Doi H. et al. Amount of hydroxyl radical
    in calcium‑ion implanted titanium and point of zero charge of
    constituent oxide of the surface modified layers, J. Material Sci.:
    Mater. Med. 1998. Vol. 9. P. 89–92.
    21. Huang P., Xu K.‑W., Han Y. Preparation and apatite layer forma‑
    tion of plasma electrolyte oxidation film on titanium for biomedi‑
    cal application, Materials Letters. 2005. Vol. 59. P. 185–189.
    22. Kim M., Kawashita M. Novel bioactive materials with different
    mechanical properties, Biomaterials. 2003. Vol. 24. P. 2161–
    23. Kokubo T., Takadama H. How useful is SBF in predicting in vivo
    bone bioactivity? Biomaterials. 2006. Vol. 27. P. 2907–2915.
    24. Li X., Zhang X., Li Z. at al. Synthesis and characteristics of NiO
    nanoparticles by thermal decomposition of nickel dimethylgly‑
    oximate rods, Solid State Communications. 2006. Vol. 137, No. 11.
    P. 581–584.
    25. Rondelli G. Corrosion resistance tests of NiTi shape memory
    alloy, Biomaterials. 1996. Vol. 17. P. 2003–2008.
    26. Ryu H.S., Song W.‑H., Hong S.‑H. Biomimetic apatite induction
    of P‑containing titania formed by microarc oxidation before and
    after hydrothermal treatment, Surface and Coatings Technology.
    2008. Vol. 202. P. 1853–1858.
    27. Sinebryukhov S.L., Gnedenkov A.S., Khrisanfova O.A. at al. The
    influence of plasma electrolytic oxidation on the mechanical
    characteristics of the NiTi alloys, Surface Engineering. 2009.
    Vol. 25, No. 8. P. 565–569.
    28. Suchanek W., Yashma M., Kakihana M., at al. Hydroxyapatite
    ceramics with selected sintering additives, Biomaterials. 1997.
    Vol. 18. P. 925–933.
    29. Wei D., Zhow Y., Jia D. at al. Biomimetic apatite deposited on
    microarc anatase‑based ceramic coatings, Ceramic International.
    2008. Vol. 34. P. 1139–1144.
    30. Wei D., Zhow Y., Jia D. at al. Characteristics and in vitro bioac‑
    tivity of a microarc‑oxidized TiO2
    –based coating after chemical
    treatment, Acta Biomaterialia. 2007. Vol. 3. P. 817–827.


Founded in 1997  |  Editions in a year: 4, Articles in one issue: 30 |  ISSN of print version: 1609-1175  |  Ind.: 18410 (Agency "Rospechat’")  |  Edition: 1000 c.