Functional activity of neutrophils infected by RNA viruses
UDK: 616‑022.7:612.112.91:578.223 | Pages: 93–96 | Read full text | Download PDF
Annotation:
The paper comprises the findings related to the functional capacity of neutrophils infected by tick‑borne encephalitis virus and Hantavirus. The authors found that tick‑borne encephalitis virus have taken more significant effect on the oxygen‑generating capacity of neutrophils rather than Han‑tavirus. As such, in the cells infected by causative agent of the tick‑borne encephalitis virus, there was a tendency to anaerobic way of energy production that corresponded to an increase of the lactate de‑hydrogenase activity. Thus, the reduced capacity of myeloperoxidase showed to suppression of cell protective potency in response to virus infiltration.
Links to authors:
I.N. Lyapun, N.G. Plekhova, L.M. Somova, E.I. Drobot, N.V. Kryilova, I.G. Maksema
Research Institute of Epidemiology and Microbiology, Siberian Branch of Russian Academy of Medical Sciences (1 Selskaya St. Vladivostok 690087 Russian Federation)
I.N. Lyapun, N.G. Plekhova
Far Eastern Federal University (27 Ok-tyabrskaya St. Vladivostok 690091 Russian Federation)
- Zenkov N.K., Menwikova E.B. Activated oxygen metabolites in
biological systems, Uspehi sovremennoj biologii. M., 1993. Vol.
113, No. 3. P. 286–296.
2. Kolman Ja., Rem K.‑G. Visual biochemistry. M: Mir, 2000. 469 p.
3. Pletnev A.G. The structure, organization and detection of genome‑
borne encephalitis virus: abstrakts. M., 1990. 304 p.
4. Plehova N.G., Somova L.M., Drobot E.I. et al. The change in
the metabolic activity of macrophages under the influence
of tick‑borne encephalitis, Biohimija. 2007. Vol. 72, No. 2.
P. 236–246.
5. Shepelev A.P., Kornienko I.V., Shestopalov A.V. et.al. The free
radical oxidation role in the infectious diseases pathogenesis,
Voprosy medicinskoj himii. 2000. No. 2. P. 12–26.
6. Arruda M.A., Barja‑Fidalgo C. NADPH‑oxidase activity: in the
crossroad of neutrophil life and death, Frontiers in Bioscience.
2009. Vol.14. P. 4546–4556.
7. Brinton M.A., Dispoto J.H. Sequence and secondary structure
analysis of the 5›‑terminal region of flavivirus genome RNA, Virol.
1988. Vol. 162. P. 290–299.
8. Cross A.R., Jones O.T.G. Enzymic mechanisms of superoxide
production, Biochim. Biophys. Acta. 1991. Vol. 1057. P. 281–298.
9. Elbim C., Monceaux V., Mueller Y.M. et al. Early Divergence in
Neutrophil Apoptosis between Pathogenic and Nonpathogenic
Simian Immunodeficiency Virus Infections of Nonhuman
Primates, J. Immunol. 2008. Vol. 181. P. 8613–8623.
10. Engelich G., White M., Hartshorn K.L. Role of the respiratory burst
in co‑operative reduction in neutrophil survival by influenza A virus
and Escherichia coli, J. Med. Microbiol. 2002. Vol. 51. P. 484–490.
11. Fuchs T.A., Abed U., Goosmann C. et al. Novel cell death program
leads to neutrophil extracellular traps, J. Cell. Biol. 2007. Vol. 176,
No. 2. P. 231–241.
12. Kennedy A.D., DeLeo F.R. Neutrophil apoptosis and the resolution
of infection, Immunol. Res. 2009. Vol. 43. P. 25–61.
13. Schmaljohn C., Schmaljohn A., Dalrymple J. Hantaan virus M
RNA: Coding strategy, nucleotide sequence, and gene order, Virol.
1987. Vol. 157. P. 31–39.
14. Witko‑Sarsat V., Rieu P., Descamps‑Latscha L., et al. Neutrophils:
molecules, functions and pathophysiological aspects, Laboratory
Investig. 2000. Vol. 80. P. 617–653.