Functional activity of neutrophils infected by RNA viruses

18 April 2011
Written by Lyapun I.N., Plekhova N.G., Somova L.M., Drobot E.I., Kryilova N.V., Maksema I.G.

  UDK: 616‑022.7:612.112.91:578.223 | Pages: 93–96 | Read full textDownload PDF 


The paper comprises the findings related to the functional capacity of neutrophils infected by tick‑borne encephalitis virus and Hantavirus. The authors found that tick‑borne encephalitis virus have taken more significant effect on the oxygen‑generating capacity of neutrophils rather than Han‑tavirus. As such, in the cells infected by causative agent of the tick‑borne encephalitis virus, there was a tendency to anaerobic way of energy production that corresponded to an increase of the lactate de‑hydrogenase activity. Thus, the reduced capacity of myeloperoxidase showed to suppression of cell protective potency in response to virus infiltration.

Links to authors:

I.N. Lyapun, N.G. Plekhova, L.M. Somova, E.I. Drobot, N.V. Kryilova, I.G. Maksema
Research Institute of Epidemiology and Microbiology, Siberian Branch of Russian Academy of Medical Sciences (1 Selskaya St. Vladivostok 690087 Russian Federation)
I.N. Lyapun, N.G. Plekhova
Far Eastern Federal University (27 Ok-tyabrskaya St. Vladivostok 690091 Russian Federation)

  1. Zenkov N.K., Menwikova E.B. Activated oxygen metabolites in
    biological systems, Uspehi sovremennoj biologii. M., 1993. Vol.
    113, No. 3. P. 286–296.
    2. Kolman Ja., Rem K.‑G. Visual biochemistry. M: Mir, 2000. 469 p.
    3. Pletnev A.G. The structure, organization and detection of genome‑
    borne encephalitis virus: abstrakts. M., 1990. 304 p.
    4. Plehova N.G., Somova L.M., Drobot E.I. et al. The change in
    the metabolic activity of macrophages under the influence
    of tick‑borne encephalitis, Biohimija. 2007. Vol. 72, No. 2.
    P. 236–246.
    5. Shepelev A.P., Kornienko I.V., Shestopalov A.V. et.al. The free
    radical oxidation role in the infectious diseases pathogenesis,
    Voprosy medicinskoj himii. 2000. No. 2. P. 12–26.
    6. Arruda M.A., Barja‑Fidalgo C. NADPH‑oxidase activity: in the
    crossroad of neutrophil life and death, Frontiers in Bioscience.
    2009. Vol.14. P. 4546–4556.
    7. Brinton M.A., Dispoto J.H. Sequence and secondary structure
    analysis of the 5›‑terminal region of flavivirus genome RNA, Virol.
    1988. Vol. 162. P. 290–299.
    8. Cross A.R., Jones O.T.G. Enzymic mechanisms of superoxide
    production, Biochim. Biophys. Acta. 1991. Vol. 1057. P. 281–298.
    9. Elbim C., Monceaux V., Mueller Y.M. et al. Early Divergence in
    Neutrophil Apoptosis between Pathogenic and Nonpathogenic
    Simian Immunodeficiency Virus Infections of Nonhuman
    Primates, J. Immunol. 2008. Vol. 181. P. 8613–8623.
    10. Engelich G., White M., Hartshorn K.L. Role of the respiratory burst
    in co‑operative reduction in neutrophil survival by influenza A virus
    and Escherichia coli, J. Med. Microbiol. 2002. Vol. 51. P. 484–490.
    11. Fuchs T.A., Abed U., Goosmann C. et al. Novel cell death program
    leads to neutrophil extracellular traps, J. Cell. Biol. 2007. Vol. 176,
    No. 2. P. 231–241.
    12. Kennedy A.D., DeLeo F.R. Neutrophil apoptosis and the resolution
    of infection, Immunol. Res. 2009. Vol. 43. P. 25–61.
    13. Schmaljohn C., Schmaljohn A., Dalrymple J. Hantaan virus M
    RNA: Coding strategy, nucleotide sequence, and gene order, Virol.
    1987. Vol. 157. P. 31–39.
    14. Witko‑Sarsat V., Rieu P., Descamps‑Latscha L., et al. Neutrophils:
    molecules, functions and pathophysiological aspects, Laboratory
    Investig. 2000. Vol. 80. P. 617–653.


Founded in 1997  |  Editions in a year: 4, Articles in one issue: 30 |  ISSN of print version: 1609-1175  |  Ind.: 18410 (Agency "Rospechat’")  |  Edition: 1000 c.