Typology of cortical neurons and their role in organising inhibitory and excitative processes in case of visceral epileptic disease

02 April 2011
Written by Yu.V. Sayko

  UDK: 616.825.264/.3:616.853 | Pages: 45-53 | Read full textDownload PDF 


The author presents an overview of literature and his own studies on the structure of temporal lobe as one of the most epileptogenic areas of brain. The epileptic lesions most often result from innate developmental disorders (dysgenesis) and acquired exogenous post‑injury and inflammatory brain lesions. At functional and neurochemical levels, these disorders are characterised by prevailing inhibitory and insufficient inhibitory synaptic processes. The cerebral anoxia and ischemia associated with the epileptic seizure as well as experimentally simulated kainite hyperexcitability result in inverse differentiation and elimination of neurocytes via apoptosis, deficient inhibition, disordered synaptic arrangement, and gliosis. Epileptiform activity arises from plastic synapse modifications that appear to enhance efficiency of excitative transmission and disturb the balance of inhibitory and excitative mediatory systems.

Links to authors:

Yu.V. Sayko
Vladivostok State Medical University (2 Ostryakova Av. Vladivostok 690950 Russian Federation)

  1. Barashkova S.A., Pravduhina G.P., Sergeeva E.D., Pinigina I.Z. The morphofunctional development of neurons and interneuronal connections in the neocortex after undergoing of intra‑uterine ischemia, Morfologija. 2006. No. 4. P. 18.
  2. Dudina Ju.V. NADPH‑diaphorase and calcium‑binding proteins in the neurons of the rats hippocampal formation with experimental epilepsy induced by kainate, Bjulleten jeksperimentalnoj biologii i mediciny. 2005. Vol. 139, No. 3. P. 287–290.
  3. Dudina Ju.V. The cellular and neurochemical mechanisms of cortical epileptogenesis, Pacific Medical Journal. 2005. No. 4. P. 11–17.
  4. Dudina Ju.V. The state superoxide dismutase in neurons of the rats temporal cortex with experimental epilepsy, Morfologija. 2006. No. 4. P. 47–48.
  5. Dudina Ju.V. The immunological problems of epileptic brain, Dalnevostochnyj medicinskij zhurnal. 2007. No. 4. P. 116–118.
  6. Dudina Ju.V. The morphological characteristics of neocortical under temporal lobe epilepsy, Morfologija. 2008. No. 2. P. 43.
  7. Dudina Ju.V. The symptomatic temporal lobe epilepsy. Vladivostok: Reja, 2008. 300 p.
  8. Dudina Ju.V., Kalinichenko S.G., Motavkin P.A. The state of GA‑BA‑ergic interneurons temporal cortex in experimental epilepsy, Jepilepsija, pril. k Zhurnalu nevrologii i psihiatrii im. Korsakova.
    2006. No. 1. P. 83–88.
  9. Dudina Ju.V. i Motavkin P.A. The role of nitric oxide in the epileptogenesis, Dalnevostochnyj medicinskij zhurnal. 2005. No. 1. P. 109–112.
  10. Kalinichenko S.G., Dudina Ju.V., Motavkin P.A. The neyroglieformal cells: neurochemical characteristics, spatial organization and the role in the braking system of the neocortex, Citologija.
    2006. Vol. 48, No. 6. P. 508–514.
  11. Lukjanova L.D. The modern problems of hypoxia, Vestnik Rossijskoj akad. nauk. 2000. No. 4. P. 3–11.
  12. Lurija A.R. The human higher cortical function. SPb.: Piter, 2008. 624 p.
  13. Motavkin P.A., Dudina Ju.V. Morphological and biochemical aspects of apoptosis in temporal lobe epilepsy in humans and animals, Pacific Medical Journal. 2010. No. 1. P. 8–12.
  14. Ohotin V.E., Kalinichenko S.G., Dudina Ju.V. NO‑ergic transmission and NO as a volume neurotransmitter. NO influence on the mechanisms of synaptic plasticity and epileptic pathogenesis,
    Uspehi fiziol. nauk. 2002. V. 33, No. 2. P. 41–55.
  15. Henshall D.C. Apoptosis signaling pathways in seizure‑induced neuronal death and epilepsy, Biochem. Soc. Trans. 2007. Vol. 35. P. 421–423.
  16. Lein E.S., Hohn A., Shatz C.J. Dynamic regulation of BDNF and NT‑3 expression during visual system development, J. Comp. Neurol. 2000. Vol. 420. P. 1–18.
  17. Marin‑Padilla M. Cajal–Retzius cells and the development of the neocortex, Trends Neurosci. 1998. Vol. 21. P. 64–71.
  18. Morris E.B 3rd, Parisi J.E, Buchhalter J.R. Histopathologic findings of malformations of cortical development in an epilepsy surgery cohort, Arch. Pathol. Lab. Med. 2006. Vol. 130. P. 1163–1168.
  19. Ribak C.E., Bakay R.A. Neurocytology of a primate model of human temporal lobe epilepsy // J. Adv. Neurol. 1999. Vol. 79. P. 737–741.
  20. Sadleir L.G., Farrell K., Smith S., et al. Electroclinical features of absence seizures in childhood absence epilepsy, Neurology. 2006. Vol. 67. P. 413–418.
  21. Sloviter R.S., Zappone C.A., Harvey B.D., et al. “Dormant basket cell” hypothesis revisited: Relative vulnerabilities of dentate gyrus mossy cells and inhibitory inerneurons after hippocampal status epilepticus in the rat, J. Comp. Neurol. 2003, Vol. 459. P. 44–76.
  22. Tejada S., Sureda A., Roca C., Gamundi A., Esteban S. Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine, Brain Res. 2007. Vol. 71. P. 372–375.
  23. Kalinichenko S.G., Dudina Yu.V., Dyuzen I.V., Motavkin P.A. Induction of NO synthase and glial acidic fibrillary protein in astrocytes in the temporal cortex of the rat with audiogenic epileptiform reactions, Neuroscience and Behavioral Physiology. 2005. Vol. 35. No. 6. P. 629–634.
  24. Vulliemoz S., Dahoun S., Seeck M. Bilateral temporal lobe epilepsy in a patient with Turner syndrome mosaicism, Seizure. 2007. Vol. 16. P. 261–265.


Founded in 1997  |  Editions in a year: 4, Articles in one issue: 30 |  ISSN of print version: 1609-1175  |  Ind.: 18410 (Agency "Rospechat’")  |  Edition: 1000 c.