Home

Biocompatible matrix implants from natural and synthetic polymers as promising products intended for treatment of degenerative and post-injury diseases of central nervous system

10 May 2011
Written by Khotimchenko Yu.S., Scheblyikina A.V., Kumeiko V.V.

  UDK: 616.831‑089.819.843:677.021.122.6 | Pages: 54-60 | Read full text  | Download PDF 

Annotation:

The authors provide an overview of modern studies and developments in the field of biocompatible implantable materials designed for treating degenerative and post‑injury pathologies of central nervous system. As reported, the critical analysis of materials and their components derived from natural and synthetic polymers allows concluding that their application as matrix implants can make it possible to recover the integrity of injured brain, adjust supportive and trophic functions, and induce reparative processes due to inner and implantable cell sources. The up‑to‑date state of biomedical material sciences and tissue engineering for the needs of neurotransplantology is characterised as analysis of capability of materials to imitate the structure and functions of natural extracellular matrix, inducing neurogenesis and recovering conductive functions of the nervous system, and capabilities of materials to be exposed to controlled biodegradation with subsequent substitution with tissue structures.

Links to authors:

Yu.S. Khotimchenko, A.V. Scheblyikina, V.V. Kumeiko
A.V. Zhirmunsky Institute of Marine Biology (17 Palchevskogo St. Vladivostok 690041 Russia),
Yu.S. Khotimchenko, V.V. Kumeiko
Far Eastern Federal University (8 Sukhanova St. Vladivostok 690950 Russian Federation)

  1. 1. Brjuhoveckij I.S., Djujzen I.V., Motavkin PA. Morpho chemical characteristics of rats spinal cord after thoracic segmentectomy and transplantation polymeric collagen neuromatrix “Sferogel‑E” with incorporated parietal neuroepithelial cells, Kletochnaja transplantol. i tkanevaja inzhenerija. 2008. Vol. 3, No. 2. P. 57–62.
  2. Motavkin P.A. About changes in the lumbar and sacral spi‑nal nodes with sciatic nerve injury, Arh. patol. 1959. No. 1. P. 34–44.
  3. Motavkin P.A., Baranov V.F. The luminescent‑microscopic assessment of RNA protoneyronov under retrograde reactions, Arh. anatomii, gistologii i jembriologii, 1971. V. LXI, No. 7. P. 70–73.
  4. Motavkin P.A., Pigolkin Ju.I., Kaminskij Ju.V. The histophysiology circulation in the spinal cord. M.: Nauka, 1994. 233 p.
  5. Motavkin P.A., Sidorova A.G., Baranov V.F. Wollers degeneration and reduction reactions of neurons extension cord // Dep. VINITI 04.11.1992. No. 3172‑V92. 107 p. 
  6. Motavkin P.A., Chertok V.M. The histophysiology vascular mechanisms of cerebral circulation. M.: Medicina, 1980. 200 p.
  7. Pigolkin Ju.I., Volodin S.A., Sherstjuk B.V. et al. The morphofunctional characteristics of the spinal cord microvasculature under its experimental injury, Vopr. nejrohirurgii. 1989. No. 4. P. 30–31.
  8. Jarygin V.I., Banin V.V., Jarygin K.I., Brjuhoveckij A.S. The regeneration of the rats spinal cord after thoracic segmentectomy: growth and repair of nerve conductors, Morfologija. 2006. V. 129,
    No. 1. P. 30–38.
  9. Brightman A.O., Rajwa B.P., Sturgis J.E. et al. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro // Biopolymers. 2000. Vol. 54, No. 3. P. 222–234.
  10. Chen Y.G., Lee, M.W., Tu Y.H. et al. Surface coupling of longchain hyaluronan to the fibrils of reconstituted type II collagen, Artificial Cells, Blood Substitutes, and Biotechnology. 2010. Vol. 37.
    P. 222–226.
  11. Cui F.Z., Tian W.M., Fan Y.W. et al. Cerebrum repair with PHPMA hydrogel immobilized with neurite‑promoting peptides in traumatic brain injury of adult rat model, Journal of Bioactive and Compatible Polymers. 2003. Vol. 18, No. 6. P. 413–432.
  12. Cui F.Z., Tian W.M., Hou S.P. et al. Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering, Journal of Materials Science-Materials in Medicine. 2006. Vol. 17, No. 12. P. 1393–1401.
  13. Cullen D.K., Lessing M.C., LaPlaca M.C. Collagen‑dependent neurite outgrowth and response to dynamic deformation in threedimensional neuronal cultures, Annals of Biomedical Engineering.
    2007. Vol. 35, No. 5. P. 835–846.
  14. Dhoot N.O., Tobias C.A., Fischer I., Wheatley M.A. Peptidemodified alginate surfaces as a growth permissive substrate for neurite outgrowth, Journal of Biomedical Materials Research Part A, 2004. Vol. 71A, No. 2. P. 191–200.
  15. Gillette B.M., Jensen J.A., Wang M.X. et al. Dynamic hydrogels: switching of 3D microenvironments using two‑component naturally derived extracellular matrices, Advanced Materials, 2010. Vol. 22, No. 6. P. 686–691.
  16. Gros T., Sakamoto J.S., Blesch A. et al. Regeneration of long‑tract axons through sites of spinal cord injury using templated agarose scaffolds, Biomaterials, 2010. Vol. 31, No. 26. P. 6719–6729.
  17. Hahn M.S., Teply B.A., Stevens M.M. et al. Collagen composite hydrogels for vocal fold lamina propria restoration, Biomaterials, 2006. Vol. 27, No. 7. P. 1104–1109.
  18. Hejcl A., Lesny P., Pradny M. et al. Biocompatible Hydrogels in Spinal Cord Injury Repair, Physiological research. 2008. Vol. 57. P. S121–S132.
  19. Horn E.M., Beaumont M., Shu X.Z., et al. Influence of crosslinked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury, Journal of Neurosurgery-Spine. 2007. Vol. 6, No. 2. P. 133–140.
  20. Hou S., Tian W., Xu Q. et al. The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia co‑cultured with hyaluronic acid hydrogels modified with Nogo‑66 receptor antagonist in vitro, Neuroscience. 2006. Vol. 137, No. 2. P. 519–529.
  21. Hsu S.H., Su C.H., Chiu I.M. A novel approach to align adult neural stem cells on micropatterned conduits for peripheral nerve regeneration: a feasibility study, Artif. Organs. 2009. Vol.
    33, No. 1. P. 26–35.
  22. Hunt D., Coffin R.S., Anderson P.N. The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review, Journal of Neurocytology. 2002. Vol. 31, No. 2. P. 93–120.
  23. Jain A., Kim Y.T., McKeon R.J., Bellamkonda R.V. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury, Biomaterials. 2006. Vol.
    27, No. 3. P. 497–504.
  24. Kataoka K., Suzuki Y., Kitada M. et al. Alginate, a bioresorbable material derived from brown seaweed, enhances elongation of amputated axons of spinal cord in infant rats, Journal of Biomedical Materials Research. 2001. Vol. 54, No. 3. P. 373–384.
  25. Li X., Yang Z., Zhang A. et al. Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats, Biomaterials. 2009. Vol. 30. P. 1121–1132.
  26. Liesi P., Kauppila T. Induction of type IV collagen and other basement‑membrane‑associated proteins after spinal cord injury of the adult rat may participate in formation of the glial scar, Experimental Neurology. 2002. Vol. 173, No. 1. P. 31–45.
  27. Lin Y.C., Tan F.J., Marra K.G. et al. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications, Acta Biomaterialia. 2009. Vol. 5. P. 2591–2600.
  28. Ma W., Fitzgerald W., Liu Q.Y. et al. CNS stem and progenitor cell differentiation into functional neuronal circuits in three‑dimensional collagen gels, Experimental Neurology. 2004. Vol. 190, No. 2. P. 276–288.
  29. Mio K., Stern R. Inhibitors of the hyaluronidases, Matrix Biology. 2002. Vol. 21, No. 1. P. 31–37.
  30. Necas J., Bartosikova L., Brauner P., Kolar J. Hyaluronic acid (hyaluronan): a review, Veterinarni Medicina. 2008. Vol. 53, No. 8. P. 397–411.
  31. Novikova L.N., Mosahebi A., Wiberg M. et al. Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation, Journal of Biomedical Materials, Research Part A. 2006. Vol. 77A,
    No. 2. P. 242–252.
  32. Park J., Lim E., Back S. et al. Nerve regeneration following spinal cord injury using matrix metalloproteinase‑sensitive, hyaluronic acid‑based biomimetic hydrogel scaffold containing brain‑derived neurotrophic factor, Journal of Biomedical Materials, Research Part A. 2010. Vol. 93A, No. 3. P. 1091–1099.
  33. Park T.G., Lu W.Q., Crotts G. Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly (D,L‑lactic acid‑co‑glycolic
    acid) microspheres, Journal of Controlled Release. 1995. Vol. 33, No. 2. P. 211–222.
  34. Pinzon A., Calancie B., Oudega M., Noga B.R. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord, Journal of Neuroscience Research. 2001. Vol. 64. P. 533–541.
  35. Perris R., Syfrig J., Paulsson M., Bronnerfraser M. Molecular mechanisms of neural crest cell attachment and migration on types I and IV collagen, J. Cell Science. 1993. Vol. 106. P. 1357–1368.
  36. Phillippi J.A., Miller E., Weiss L. et al. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle‑ and bone‑like subpopulations, Stem Cells. 2008. Vol. 26. P. 127–134.
  37. Prang P., Muller R., Eljaouhari A. et al. The promotion of oriented axonal regrowth in the injured spinal cord by alginate‑based anisotropic capillary hydrogels, Biomaterials. 2006. Vol. 27, No. 19. P. 3560–3569.
  38. Rochkind S., Shahar A., Fliss D. Development of a tissue‑engineered composite implant for treating traumatic paraplegia in rats, European Spine Journal. 2006. Vol. 15. P. 234–245.
  39. Sajjad S.M. Spinal cord regeneration via collagen entubulation: master’s thesis. Massachusetts institute of technology, 2004. 57 p.
  40. Stokols S., Tuszynski M.H. The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury, Biomaterials, 2004. Vol. 25, No. 27. P. 5839–5846.
  41. Stokols S., Tuszynski M.H. Freeze‑dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury, Biomaterials. 2006. Vol. 27, No. 3. P. 443–451.
  42. Surazynski A., Miltyk W., Czarnomysy R. et al. Hyaluronic acid abrogates nitric oxide‑dependent stimulation of collagen degradation in cultured human chondrocytes, Pharmacological Research. 2009. Vol. 60, No. 1. P. 46–49.
  43. Suri S., Schmidt C.E. Cell‑Laden Hydrogel Constructs of Hyaluronic Acid, Collagen, and Laminin for Neural Tissue Engineering, Tissue Engineering, Part A. 2010. Vol. 16, No. 5. P. 1703–1716.
  44. Teng Y.D., Lavik E.B., Qu X.L. et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells, Proceedings of the National
    Academy of Sciences of the United States of America. 2002. Vol. 99, No. 14. P. 3024–3029.
  45. Ulrich T.A., Jain A., Tanner K. et al. Probing cellular mechanobiology in three‑dimensional culture with collagen–agarose matrices, Biomaterials. 2010. Vol. 31. P. 1875–1884.
  46. Wang W.H., Zhang M., Lu W. et al. Cross‑linked Collagen‑Chondroitin Sulfate‑Hyaluronic Acid Imitating Extracellular Matrix as Scaffold for Dermal Tissue Engineering, Tissue Eng. Part C-Methods. 2010. Vol. 16. P. 269–279.
  47. Wei Y.T., He Y., Xu C.L. et al. Hyaluronic acid hydrogel modified with nogo‑66 receptor antibody and poly‑(L)‑lysine to promote axon regrowth after spinal cord injury, Journal of Biomedical Materials Research, Part B-Applied Biomaterials. 2010. Vol. 95B, No. 1. P. 110–117.
  48. Woerly S., Doan V., Evans‑Martin F. et al. Spinal cord reconstruction using NeuroGel (TM) implants and functional recovery after chronic injury, Journal of Neuroscience Research. 2001. Vol. 66,
    No. 6. P.1187–1197.
  49. Woerly S., Pinet E., de Robertis L. et al. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel), Biomaterials. 2001. Vol. 22, No. 10. P. 1095–1111.
  50. Woerly S., Doan V.D., Sosa N. et al. Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord, Journal of Neuroscience Research. 2004.
    Vol. 75, No. 2. P. 262–272.
  51. Xiao M., Klueber K.M., Lu C. et al. Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery, Exp. Neurol. 2005. Vol. 194. P. 12–30.
  52. Yoshil S., Ito S., Shima M. et al. Functional restoration of rabbit spinal cord using collagen‑filament scaffold, Journal of Tissue Engineering and Regenerative Medicine. 2009. Vol. 3, No. 1. P. 19–25.

PUBLISHER: "MEDITSYNA DV"

Founded in 1997  |  Editions in a year: 4, Articles in one issue: 30 |  ISSN of print version: 1609-1175  |  Ind.: 18410 (Agency "Rospechat’")  |  Edition: 1000 c.