Home

Stem cells of neuronal origin in mammal’s brain

23 March 2011
Written by Okhotin V.E., Revischin A.V., Pavlova G.V.

  UDK: 611.018.82:576.3 | Pages: 60-65 | Read full textDownload PDF 

Annotation:

New knowledge about stem cells that make it possible to in a new light interpret the functioning of nervous tissue in health and disease has been obtained during the last fifteen years. As reported, the proliferating stem cells in a definitive brain under certain conditions can be involved in reparative regeneration by substituting dead elements. The authors identify genome mechanisms of regulating proliferation and differentiation of stem cells and point out their role in producing malignant tumours and tropism of these cells to the tumours. These data open new opportunities for studying brain functioning and development. The neutral stem cells can be used to develop new technologies, treat neurogenerative and oncological diseases of brain.

Links to authors:

V.E. Okhotin, G.V. Pavlova
Institute of Gene Biology, RAS (34/5 Vavilova St. Moscow 119334 Russia),
A.V. Revischin
A.N. Severtsov Institute of Ecology and Evolution (33 Leninskiy Av. Moscow 119071 Russian Federation)

  1. Aboody K.S., Brown A., Rainov N.G. et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas, Proc. Natl. Acad. Sci. USA. 2000. Vol. 97. P. 12846–12851.
  2. Aimone, J.B., Wiles, J., Gage, F.H. Potential role for adult neurogenesis in the encoding of time in new memories, Nat. Neurosci. 2006. Vol. 9. P. 723–727
  3. Aleksandrova M.A., Saburina I.N., Poltavtseva R.A. et al. Behavior of human neural progenitor cells transplanted to rat brain, Brain Res. Dev. Brain Res. 2002. Vol. 134. P. 143–148.
  4. Allport J.R., Weissleder R. Murine Lewis lung carcinoma–derived endothelium expresses markers of endothelial activation and requires tumor‑specific extracellular matrix in vitro, Neoplasia. 2003. Vol. 5. P. 205–217.
  5. Allport J.R., Shinde Patil V.R., Weissleder R. Murine neuronal progenitor cells are preferentially recruited to tumor vasculature via alpha4–integrin and SDF‑1‑alpha‑dependent mechanisms, Cancer Biol. Ther. 2004. Vol. 3. P. 838–844.
  6. Alonso G. NG2 proteoglycan–expressing cells of the adult rat brain: possible involvement in the formation of glial scar astrocytes following stab wound, Glia. 2005. Vol. 49. P. 318–338
  7. Altman J., Das G.D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats, J. Comp. Neurol. 1965. Vol. 124. P. 319–335
  8. Belachew S., Chittajallu R., Aguirre A.A. et al. Postnatal NG2 proteoglycan–expressing progenitor cells are intrinsically multipotent and generate functional neurons, J. Cell Biol. 2003. Vol.161. P. 169–86.
  9. Belayev L., Khoutorova L., Zhao W. et al. Neuroprotective effect of darbepoetin alfa, a novel recombinant erythropoietic protein, in focal cerebral ischemia in rats, Stroke. 2005. Vol.36. P. 1065–1070.
  10. Belmadani A., Tran P.B., Ren D., Miller R.J. Chemokines regulate the migration of neural progenitors to sites of neuroinflammation, J. Neurosci. 2006. Vol. 26. P. 3182–3191.
  11. Bhardwaj R.D., Curtis M.A., Spalding K.L. et al. Neocortical neurogenesis in humans is restricted to development, Proc. Natl. Acad. Sci. USA. 2006. Vol. 103. P. 12564–12568.
  12. Bjorklund L.M., Sanchez‑Pernaute R., Chung S. et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model, Proc. Natl. Acad. Sci. USA. 2002. Vol. 99. P. 2344–2349
  13. Brazelton T.R., Rossi F.M., Keshet G.I. et al. From marrow to brain: expression of neuronal phenotypes in adult mice, Science. 2000. Vol. 290. P. 1775–1779.
  14. Brustle O., Jones K.N., Learish R.D. et al. Embryonic stem cellderived glial precursors: a source of myelinating transplants, Science. 1999. Vol. 285. P. 754–756.
  15. Chen X., Fang H., Schwob J. EMultipotency of purified, transplanted globose basal cells in olfactory epithelium, J. Comp. Neurol. 2004. Vol. 469. P. 457–474.
  16. Doetsch F., Garcia‑Verdugo J.M., Alvarez‑Buylla A. Regeneration of a germinal layer in the adult mammalian brain, Proc. Natl. Acad. Sci. USA. 1999. Vol. 96. P. 11619–11624.
  17. Ehrenreich H., Hasselblatt M., Dembowski C. et al. Erythropoietin therapy for acute stroke is both safe and beneficial, Mol. Med. 2002. Vol. 8. P. 495–505.
  18. Goridis C., Rohrer H. Specification of catecholaminergic and serotonergic neurons, Nat. Rev. Neurosci. 2002. Vol. 3. P. 531–541.
  19. Gould E., Reeves A.J., Fallah M. et al. Hippocampal neurogenesis in adult old world primates, Proc. Natl. Acad. Sci. USA. 1999. Vol. 96. P. 5263–5267.
  20. Gritti A., Parati E.A., Cova L. et al. Multipotential stem cells from the adult mouse brain proliferate and self–renew in response to basic fibroblast growth factor, J. Neurosci. 1996. Vol. 16. P. 1091–1100.
  21. Gritti A., Frolichsthal‑Schoeller P., Galli R., Vescovi A.L. Epidermal and fibroblast growth factors behave as mitogenic regulators of for a single multipotent stem–like cell population from the subventricular region of the adult mouse forebrain, J. Neurosci. 1999. Vol. 19. P. 3287–3297.
  22. Hagell P., Cenci, M. A. Dyskinesias and dopamine cell replacement in Parkinson›s disease: a clinical perspective, Brain Res. Bull. 2005. Vol. 68. P. 4–15.
  23. Honeth G., Staflin K., Kalliomaki S., Lindvall M., Kjellman C. Chemokine‑directed migration of tumor‑inhibitory neural progenitor cells towards an intracranially growing glioma, Exp. Cell Res. 2006. Vol. 312. P. 1265–1276.
  24. Iacovitti L., Stull N.D., Jin H. Differentiation of human dopamine neurons from an embryonic carcinomal stem cell line, Brain Res. 2001. Vol. 912. P. 99–104.
  25. Imitola J., Raddassi K., Park K.I. et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell–derived factor 1alpha/CXC chemokine receptor 4 pathway, Proc. Natl. Acad. Sci. USA. 2006. Vol. 101. P. 18117–18122.
  26. Lee A., Kessler J.D., Read T.A. et al. Isolation of neural stem cells from the postnatal cerebellum, Nat. Neurosci. 2005. Vol. 8. P. 723–729.
  27. Loseva E.V. Neurotransplantation of the fetal tissue and compensatory–restorative processes in the recipient nervous system, Usp. Fiziol. Nauk. 2001. Vol. 32. P. 19–37.
  28. Magavi S.S., Leavitt B.R., Macklis J.D. Induction of neurogenesis in the neocortex of adult mice, Nature. 2000. Vol. 405. P. 951–955.
  29. Mapara K.Y., Stevenson C.B., Thompson R.C., Ehtesham M. Stem cells as vehicles for the treatment of brain cancer, Neurosurg. Clin. N. Am. 2007. Vol. 18. P. 71–80.
  30. Marshall C.T., Lu C., Winstead W. et al. The therapeutic potential of human olfactory–derived stem cells, Histol. Histopathol. 2006. Vol. 21. P. 633–643.
  31. Massengale M., Wagers A.J., Vogel H., Weissman I.L. Hematopoietic cells maintain hematopoietic fates upon entering the brain, J. Exp. Med. 2005. Vol. 201. P. 1579–1589.
  32. McColl S.R., Mahalingam S., Staykova M. et al. Expression of rat I‑TAC/CXCL11/SCYA11 during central nervous system inflammation: comparison with other CXCR3 ligands, Lab. Invest. 2004. Vol. 84. P. 1418–1429.
  33. Mercier F., Kitasako J.T., Hatton G.I. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network, J. Comp. Neurol. 2002. Vol. 451. P. 170–188.
  34. Mezey E., Key S., Vogelsang G. et al. Transplanted bone marrow generates new neurons in human brains, Proc. Natl. Acad. Sci. USA. 2003. Vol. 100. P. 1364–1369.
  35. Ohab J.J., Fleming S., Blesch A., Carmichael S.T. A neurovascular niche for neurogenesis after stroke, J. Neurosci. 2006. Vol. 26. P. 13007–13016.
  36. Olanow C.W., Kordower J.H., Freeman T.B. Fetal nigral transplantation as a therapy for Parkinson›s disease, Trends Neurosci. 1996. Vol. 19. P. 102–109.
  37. Palmer T.D., Markakis E.A., Willhoite A.R. et al. Fibroblast growth factor 2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS, J. Neurosci. 1999. Vol. 19. P. 8487–8497.
  38. Palmer T.D., Willhoite A.R., Gage F.H. Vascular niche for adult hippocampal neurogenesis, J. Comp. Neurol. 2000. Vol. 425. P. 479–494.
  39. Parker M.A., Anderson J.K., Corliss D.A. et al. Expression profile of an operationally–defined neural stem cell clone, Exp. Neurol. 2005. Vol. 194. P. 320–332.
  40. Poltavtseva R.A., Marey M.V., Aleksandrova M.A. et al. Evaluation of progenitor cell cultures from human embryos for neurotransplantation, Brain Res. Dev. Brain Res. 2002. Vol. 134. P. 149–154.
  41. Potten C.S., Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt, Development. 1990. Vol. 110. P. 1001–1020.
  42. Revishchin A.V., Aleksandrova M.A., Podgornyi O.V. et al. Human fetal neural stem cells in rat brain: effects of preculturing and transplantation, Bull. Exp. Biol. Med. 2005. Vol. 139. P. 213–216.
  43. Reynolds B.A., Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system, Science. 1992. Vol. 255. P. 1707–1710.
  44. Robin A.M., Zhang Z.G., Wang L. et al. Stromal cell–derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia, J. Cereb. Blood Flow Metab. 2006. Vol. 26. P. 125–134.
  45. Roybon L., Ma Z., Asztely F. et al. Failure of transdifferentiation of adult hematopoietic stem cells into neurons, Stem Cells. 2006. Vol. 24. P. 1594–1604.
  46. Sawamoto K., Nakao N., Kobayashi K. et al. Visualization, direct isolation, and transplantation of midbrain dopaminergic neurons, Proc. Natl. Acad. Sci. USA. 2001. Vol. 98. P. 6423–6428.
  47. Scintu F., Reali C., Pillai R. et al. Differentiation of human bone marrow stem cells into cells with a neural phenotype: diverse effects of two specific treatments, BMC Neurosci. 2006. Vol. 7. P. 14.
  48. Suslov O.N., Kukekov V.G., Ignatova T.N., Steindler D.A. Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres, Proc. Natl. Acad. Sci. USA. 2002. Vol. 99. P. 14506–14511.
  49. Tremain N., Korkko J., Ibberson D. et al. MicroSAGE analysis of 2,353 expressed genes in a single cell–derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages, Stem Cells. 2001. Vol. 19. P. 408–418.
  50. Vescovi A.L., Parati E.A., Gritti A. et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation, Exp. Neurol. 1999. Vol. 156. P. 71–83.
  51. Vitry S., Bertrand J.Y., Cumano A., Dubois‑Dalcq M. Primordial hematopoietic stem cells generate microglia but not myelinforming cells in a neural environment, J. Neurosci. 2003. Vol. 23. P. 10724–10731.
  52. Wang L., Zhang Z., Wang Y. et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats, Stroke. 2004. Vol. 35. P. 1732–1737.
  53. Watt F.M., Hogan B.L. Out of eden: stem cells and their niches, Science. 2004. Vol. 287. P. 1427–1430.
  54. Woodbury D., Reynolds K., Black I.B. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis, J. Neurosci. 2002. Vol. 69. P. 908–917.
  55. Yip S., Aboody K.S., Burns M. et al. Neural stem cell biology may be well suited for improving brain tumor therapies, Cancer. 2003. Vol. 9. P. 189–204. 

PUBLISHER: "MEDITSYNA DV"

Founded in 1997  |  Editions in a year: 4, Articles in one issue: 30 |  ISSN of print version: 1609-1175  |  Ind.: 18410 (Agency "Rospechat’")  |  Edition: 1000 c.