Neurotransmitter role of agmatine, its interaction with classic neuromediators and contribution to mechanism of pain development

Written by Dyuizen I.V., Balashova T.V., Lamash N.E., Mnatsakanyan L.A., Shoumatov V.B.

  Индекс УДК: 612.83:612.015.1:616.8‑091.81:616.8‑009.7 | Страницы: 22-27 | Полный текст статьи. PDF файл | Открыть PDF 


The paper reviews the literature data and in‑house researches on neurotransmitter agmatine and distribution of agmatinase defined as the agmatine‑degrading enzyme in mammalian and human brain. The in‑house studies are indicative of agmatinase known to occur in spinal and supraspinal motoneurons, cortical interneurons and hippocampal interneurons. The agmatinergic neurons are lacking in the posterior horn of the spinal cord. The immunocytochemical agmatinase is found in this region on neuron body and process. The authors have identified a population of initially sensitive neurons in spinal ganglions known to change the activity level, given the inflammatory and neuropathic pain. The agmatinase has been found in a small population of large neurons of rostral ventromedial medulla that formed part of endogenous monoamine analgesic systems in brain. The literature data analysis allows supposing that the antinociceptive action of agmatine arises from its rather close relationship with nitroxidergic and monoamine systems in brain and spinal cord.

Ссылки на авторов:

I.V. Dyuizen
Pacific State Medical University (2 Ostryakova Av. Vladivostok 690950 Russian Federation) 
Institute of Marine Biology named after A.V. Zhirmunsky (17 Palchevskogo St. Vladivostok 690041 Russian Federation)
T.V. Balashova, L.A. Mnatsakanyan, V.B. Shoumatov
Pacific State Medical University (2 Ostryakova Av. Vladivostok 690950 Russian Federation)
N.E. Lamash
Institute of Marine Biology named after A.V. Zhirmunsky (17 Palchevskogo St. Vladivostok 690041 Russian Federation)

  1. Anaesthesiology and intensive therapy: guide for physicians / edited by Yu. S. Polushin. SPb.: Yelbi‑SPb, 2004. 720 p.
  2. Volchkov V.A., Ignatov Yu. D., Strashnov V.I. Pain syndromes in anaesthesiology and intensive therapy. M.: MEDpress‑inform, 2006. 320 p.
  3. Gelfand B.R., Kirienko P. A., Chernenko L.Yu. Postoperative analgesia // RMJ. 2011. Vol. 11, No. 12. P. 707–713.
  4. Dyuizen I.V., Lamash N.E. Interaction of NO‑ and noradrenergic system of the brain in pain mechanisms and opiate analgesia // Vestnik FEB RAS. 2006. No. 2. P. 70–76.
  5. Mikhailovich V.A., Ignatev Yu.D. Pain syndrome. L.: Meditsina, 1990. 336 P.
  6. Osipova N.A., Petrova V.V. Pain in surgery. Methods and means of protection. M.: MIA, 2013. 464 p.
  7. Strashnov V.I., Volchkov V.A., Boikova N.V., Tomson V.V. Modern approaches to the elimination of pain // Anaesthesiology and intensive therapy. 2000. Vol. 7, No. 3. P. 188–189.
  8. Augnet M., Viossat I., Marin J.G. [et al.] Selective inhibition of inducible nitric oxide synthase by agmatine // Jpn. J. Pharmacol. 1995. Vol. 69, No 3. P. 285–287.
  9. Bauer P.M., Buga G.M., Fukuto J.M. [et al.] Nitric oxide inhibits ornithine decarboxylase via S‑nitrosylation of cysteine 360 in the active site of the enzyme // J. Biol. Chem. 2001. Vol. 276, No. 37. P. 34458–34464.
  10. Bernstein H.‑G., Derst C., Stich C. [et al.] The agmatine‑degrading enzyme agmatinase: a key to agmatine signaling in rat and human brain? // Amino Acids. 2011.Vol. 40, No. 2. P. 453–465.
  11. Bhalla, S., Rapolaviciute V., Gulati A. Determination of α(2)‑adrenoceptor and imidazoline receptor involvement in augmentation of morphine and oxycodone analgesia by agmatine and BMS182874 // Eur. J. Pharmacol. 2011. Vol. 651, No 1–3. P. 109–121.
  12. Blantz R.C., Satriano J., Gabbai F., Kelly C. Biological effects of arginine metabolites // Acta Physiol. Scand. 2000. Vol. 168, No. 1. P. 21–25.
  13. Buga, G.M., Wei L., Bauer P.M. [et al.] NG‑hydroxy‑L‑arginine and nitric oxide inhibit Caco‑2 tumor cell proliferation by distinct mechanisms // Am. J. Physiol. 1998. Vol. 275, No. 4. P. R1256–R1264.
  14. Cook H.T. [et al.] Arginine metabolism in experimental glomerulonephritis: interaction between nitric oxide synthase and arginase // Am. J. Physiol. 1994. Vol. 267, No. 4 Pt 2. P. 646–653.
  15. Courteix C., Privat A‑M., Pelissier T. [et al.] Agmatine induces antihyperalgesic effects in diabetic rats and a superadditive interaction with R(‑)‑3‑(2‑carboxypiperazine‑4‑yl)‑propyl‑1‑phosphonic acid, a Ne‑methyl‑D‑aspartate‑receptor antagonist // J. Pharmacol. and Exp. Ther. 2007. Vol. 322, No. 3. P. 1237–1245.
  16. Cywinski J. B., Parker B.M., Xu M. [et al.] A comparison of postoperative pain control in patients after right lobe donor hepatectomy and major hepatic resection for tumor // Anesth. Analg. 2004. Vol. 108, No. 3 P. 1747–1752.
  17. Dambisya Y.M., Chan K., Wong C.L. Role of adrenoceptors in the potentiation of opioid antinociception by ephedrine and phenylpropanolamine in mice // Psychopharmacology. 1991. Vol. 105, No. 4. P. 563–567.
  18. Fairbanks C.A., Schreiber K.L., Brewer K. [et al.] Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury // Proc. Nat. acad. Sci. USA. 2000. Vol. 97, No. 19. P. 10584–10589.
  19. Fairbanks C.A., Schreiber K.L., Brewer K.L. [et al.] Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury PNAS // Proc. Natl. Acad. Sci. USA. 2000. Vol. 97, No. 19. P. 10584–10589.
  20. Gabotti V.M., Tibola D., Paszcuk A.F. [et al.] Contribution of spinal glutamatergic receptors to the antinociception caused by agmatine in mice // Brain Res. 2006. Vol. 1093, No. 1. P. 116–122.
  21. Galea E., Regunathan S., Eliopoulos V. [et al.] Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine // Biochem. J. 1996. Vol. 316, No. 1. P. 247–249.
  22. Gilad G.M., Salame K., Rabey J.M. [et al.]Agmatine treatment is neuroprotective in rodent brain injury models // Life Sci. 1996. Vol. 58, No. 2. P. 41–46.
  23. Goarcke‑Postle, C.J., Overland A.C., Riedl M.S. [et al.]Potassium‑and capsaicin‑induced release of agmatine from spinal nerve terminals // J. Neurochem. 2007. Vol. 102, No. 6. P. 1738–1748.
  24. Gonzalez S. Natural compound may offer new treatment for chronic pain // NIDA Notes. 2001. Vol. 16, No. 3. P. 10–11.
  25. Gotoh T., Araki M., Mori M. [et al.] Chromosmal localization of the human arginase II gene and tissue distribution of its mRNA // Biochem. Biophys. Res. Commun. 1997. Vol. 233, No. 2. P. 487–491.
  26. Halaris A., Piletz J. Agmatine: metabolic pathway and spectrum of activity in brain // CNS Drugs. 2007. Vol. 21, No. 11. P. 885–900.
  27. Herman Z.S. Agmatine‑a novel endogenous ligand of imidazoline receptors // Pol. J. Pharmacol. 1997. Vol. 49, No. 2–3. P. 85–88.
  28. Horvath G., Kekesi G., Dobos I. [et al.] Effect of intrathecalag‑matine on inflammation‑induced thermal hyperalgesia in rats //Eur. J. Phramacol. 1999. Vol. 368, No. 2–3. P. 197–204.
  29. Hou D., Suzuki K., Wolfgang W.J. [et al.] Presynaptic impairment of synaptic transmission in Drosophila embryos lacking Gsα // J. Neuroscience. 2003. Vol. 23, No. 13. P. 5897–5905.
  30. Kinnman E., Levine J.D. Involvement of the sympathetic postganglionic neuron in capsaicininduced secondary hyperalgesia in the rat // Neuroscience. 1995. Vol. 65, No. 1. P. 283–291.
  31. Kolesnikov Y.A., Jain S., Wilson R. [et al.] Peripheral morphine analgesia: synergy with central sites and a target of morphine tolerance // J. Pharmacol. Exp. Ther. 1996. Vol. 279, No. 2. P. 502–506.
  32. Li J., Pei G., Qin B.‑Y. Correlation between inhibitions of morphine withdrawal and nitroc‑oxide syntase by agmatine // Actapharmacol. sin. 1999. Vol. 20, No. 4. P. 375–380.
  33. Millan M.J. Descending control of pain // Prog. Neurobiology. 2002. Vol. 66. No. 6. P. 355–474.
  34. Miyanaka K., Gotoh T., Nagasaki A.[et al.] Immunohistochemical localization of arginase II and other enzymes of arginine metabolism in rat kidney and liver // Histochem. J. 1998. Vol. 30, No. 10. P. 741–751.
  35. Morris S.M.Jr. Regulation of enzymes of urea and arginine synthesis // Annu. Rev. Nutr. 1992. Vol. 12. P. 81–101.
  36. Munder M. Beak‑San Choi, Rogers M. [et al.] Th1/Th2‑regulated expression of arginase isoforms in murine macrophages and dendritic cells // J. Immunol. 1999. Vol.163, No. 7. P.3771–3777.
  37. Otake J., Ruggiero D.A., Regunathan S. Regional localization of agmatine in the rat brain: an immunocytochemical study // Brain Res. 1998. Vol. 787, No. 1. P. 1–14.
  38. Pegg A.E. Mammalian polyamine metabolism and function // IUBMB Life. 2009 Vol. 61, No. 9. P. 880–894.
  39. Petroff O.A. GABA and glutamate in the human brain // Neuroscientist. 2002. Vol. 8, No. 6. P. 562–573.
  40. Qin X.‑H., Su R.‑B., Wu N. [et al.] The analgesic effect of agmatine on inflammatory pain and its influence on the analgesic effect of morphine // Chin. Pharmacol. Bill. 2006. Vol. 22, No. 9. P. 1070–1074.
  41. Rashiq S., Koller M., Haykowsky M. [et al.] The effect of opioid analgesia on exercise test performance in chronic low back pain // Pain. 2003. Vol. 106, No 1–2. P. 119–125.
  42. Ready L.B., Edwards W.T. Management of acute pain: a practical guide. Seattle: IASP Publications, 1992. 73 p.
  43. Reis D.J., Regunathan S. Is agmatine a novel neurotransmitter in brain? // Trends Pharmacol. Sci. 2000. Vol. 21, No. 5. P. 187–193.
  44. Roerig S.C. Spinal and supraspinalagmatine activate different receptors to enhance spinal morphine antinociception // Ann. N.Y. Acad. Sci. 2003. Vol. 1009. P. 116–126.
  45. Ruiz‑Durantez E., Llorente J., Ulibarri E. [et al.]Agmatine–morphine interaction on nociception in mice // Ann. N. Y. Acad.Sci. 2003. Vol. 1009. P. 133–136.
  46. Sastre M., Galea E., Feinstein D. [et al.] Metabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokines // Biochem. J. 1998. Vol. 330, No. 3. P. 1405–1409.
  47. Sastre M., Regunathan S., Galea E. [et al.]Agmatinase activity in rat brain: a metabolic pathway for the degradation of agmatine // J. Neurochem. 1996. Vol. 67, No. 4. P. 1761–1765.
  48. Satriano J. Agmatine: at the crossroads of the arginine pathways // Ann. N.Y. Acad. Sci. 2003. Vol. 1009. P. 34–43.
  49. Schaible H.G., Schmidt R.F. Neurophysiology of chronic inflammatory pain: electrophysiological recordings from spinal cord neurons in rats with prolonged acute and chronic unilateral inflammation at the ankle // Prog. Brain. Res. 1996. Vol. 110. P. 167–176.
  50. Su R.‑B., Li J., Qin B.‑Y. A biphasic opioid function midulator: agmatine // Acta Pharmacol. Sin. 2003. Vol. 24, No. 7. P. 631–636.
  51. Tabor C.W., Tabor H. Polyamines // Ann. Rev. Biochem. 1984. Vol. 53. P. 749–790.
  52. Uzbay T.I. The pharmacological importance of agmatine in the brain // Neuroscience and Biobehavioral Reviews. 2012. Vol. 36, No. 1. P. 502–519.
  53. Vega‑Agapito V., Almeida A., Heales S.J. Peroxynitrite anion stimulates arginine release from cultured rat astrocytes // J. Neurochem. 1999. Vol. 73, No. 4. P. 1446–1452.
  54. Wiesinger H. Arginine metabolism and the synthesis of nitric oxide in the nervous system // Progress in Neurobiology. 2001. Vol. 64, No. 4. P. 365–391.
  55. Wigdor S., Wilcox G.L. Central and systemic morphine‑induced antinociception in mice: contribution of descending serotonergic and noradrenergic pathways // J. Pharmacol. Exp. Ther. 1987. Vol. 242, No. 1. P. 90–95.
  56. Zhen J.‑Q., Weng X.‑C., Gai X.‑D. [et al.] Mechanism underlying blockade of voltage‑gated calcium channels by agmatine in cultured rat hippocampal neurons // Actapharmacol. Sin. 2004. Vol. 25, No. 3. P. 281–285.


Founded in 1997  |  Editions in a year: 4, Articles in one issue: 30 |  ISSN of print version: 1609-1175  |  Ind.: 18410 (Agency "Rospechat’")  |  Edition: 1000 c.