Cellular and post-genomic approaches to the treatment of lioblastoma multiforme

Written by Bryukhovetskiy I.S.

  UDK: 616-006.484.04-084.615.277.3:611.018.1 | Pages: 12–18 | Full text PDF | Open PDF 


Glioblastoma multiforme, one of the most aggressive human brain tumor. Most current treatments are not effective, the median survival time of 12–14 months. One of the leading causes of treatment resistance is associated with tumor stem cells. The analysis of modern approaches to the creation of biomedical drugs effects on tumor stem cells glioblastoma multiforme on the achievements of modern cellular and post-genomic technologies. Proposed the idea of a combination of methods of targeted therapy with technology regulation of the key functions of tumor stem cells cellular systems with remodel proteome.

Links to authors:

I.S. Bryukhovetskiy
School of Biomedicine, Far Eastern Federal University (8 Sukhanova St. Vladivostok 690950 Russian Federation)

1. Bryukhovetskiy I.S., Bryukhovetskiy A.S., Mischenko P.V. [et al.] Migration of human hematopoietic stem cells to glioblastoma cells of a line U87 in vitro // Russian Biotherapeutic Journal. 2014. Vol. 13, No. 4. P. 31–36
2. Bryukhovetskiy I.S., Bryukhovetskiy A.S., Khotimchenko Yu.S. New molecular and biological approaches to the treatment of the multiforme glioblastoma // Bulletin of Experimental Biology and Medicine 2014. Vol. 158, No. 12. P. 762–768.
3. Bryukhovetskiy I.S The effectiveness of the drug of the stem cell in vivo experiment after chemotherapy in the glioblastoma model in rats // Russian Biotherapeutic Journal 2014. Vol. 13, No. 4. P. 51–57.
4. Bryukhovetskiy I.S., Bryukhovetskiy A.S., Kumeyko V.V. [et al.] Stem cells in carcinogenesis of the multiforme glioblastoma // Cellular Transplantation and Tissue Engineering. 2013. Vol. 8, No. 2. P. 13–19.
5. Bryukhovetskiy I.S., Bryukhovetskiy A.S., Mischenko P.V. [et al.] The role of systemic migration and homing mechanisms of stem cells in the development of malignant tumors of the central nervous system and the development of new anti-tumor therapies // Russian Biotherapeutic Journal. 2013. Vol. 12, No. 4. P.3–12.
6. Bryukhovetskiy I.S., Mischenko P.V., Tolok E.V. [et al.] Interaction of hematopoietic stem cells and tumor cells in vitro // Pacific Medical Journal. 2014. Vol. 58, No. 4. P. 31–37.
7. Bryukhovetskiy A.S., Bryukhovetskiy I.S., Shevchenko V.E. [et al.] Antitumor individual proteome-based targeted cell drug, preparation method and the use of this drug for treatment of cancer and other malignancies // Patent RF No. 2335972.
8. Kovalenko I.B. Mathematical modeling of the impact of perturbagenes (chemical compounds) on neuronal progenitor stem cells (NSC) for the purpose of remodeling their proteomes to affect cancer stem cell of human glioblastoma U87 line. Scientific and Technical Report 09/12. М., 2012. URL: http://www.neurovita. ru/Otchet0912.html (date of access: 2015.04.17).
9. The standards, guidelines and options in the treatment of brain tumors in adults recommended by the Association of Neurosurgeons of Russia. М., 2005. 15 p.
10. Aboody K.S., Brown A., Rainov N.G. [et al.] Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas // Proc. Natl. Acad. Sci. U.S.A. 2000. Vol. 97, No. 23. P. 12846–12851.
11. Ajaz M., Jefferies S., Brazil L. [et al.] Current and investigational drug strategies for glioblastoma // J. Neurol. 2014. Vol. 261, No. 5. P. 894–904.
12. Аltman J. Are new neurons formed in the brains of adult mammals // Science. 1962. Vol. 135, No. 3509. P. 1127–1128.
13. Ammirati M., Chotai S., Newton H. [et al.] Hypofractionated intensity modulated radiotherapy with temozolomide in newly diagnosed glioblastoma multiforme // J. Clin. Neurosci. 2014. Vol. 21, No. 4. P. 633–637.
14. Barani I.J., Larson D.A. Radiation therapy of glioblastoma // Cancer Treat. Res. 2015. No. 163. P. 49–73.
15. Bexell D., Svensson A., Bengzon J. Stem cell-based therapy for malignant glioma // Cancer Treat. Rev. 2013. Vol. 39, No. 4. P. 358–365.
16. Bryukhovetskiy A., Shevchenko V., Kovalev S. [et al.] To the novel paradigm of proteome-based cell therapy of tumors: through comparative proteome mapping of tumor stem cells and tissuespecific stem cells of humans // Cell. Transplant. 2014. Vol. 23, Suppl. 1. P. 151–170.
17. Bryukhovetskiy I.S., Mischenko P.V., Tolok E.V. [et al.] Directional migration of adult hematopoeitic progenitors to C6 glioma in vitro // Oncology Letters. 2015. Vol. 9, No. 4. P. 1839–1844.
18. Dolecek T.A., Propp J.M., Stroup N.E. [et al.] CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in United States in 2005–2009 // Neuro Oncol. 2013. Vol. 15, No. 5. P. 646–647.
19. Duesberg P., Mandrioli D., McCormack A. [et al.] Is carcinogenesis a form of speciation?// Cell. Cycle. 2011. Vol. 10, No. 13. P. 2100–2114.
20. Friedmann-Morvinski D. Glioblastoma heterogeneity and cancer cell plasticity // Crit. Rev. Oncog. 2014. Vol. 19, No. 5. P. 327–336.
21. Labussiere M., Boisselier B., Mokhtari K. [et al.] Combined analysis of TERT, EGFR, and IDH status defines distinct prognostic glioblastoma classes // Neurology. 2014. Vol. 83, No. 13. P. 1200–1206.
22. Lee J.K., Joo K.M., Lee J. [et al.] Targeting the epithelial to mesenchymal transition in glioblastoma: the emerging role of MET signaling // Onco. Targets Ther. 2014. No. 7. P. 1933–1944.
23. Levy S., Chapet S., Mazeron J.J. Management of gliomas // Cancer Radiotherapy. 2014. Vol. 18, No. 5–6. P. 461–467.
24. Louis D.N., Perry A., Burger P. [et al.] International Society Of Neuropathology-Haarlem consensus guidelines for nervous system tumor classification and grading // Brain Phatol. 2014. Vol. 24, No. 5. P. 429–435.
25. Moore X.L., Lu J., Sun L. [et al.] Endothelial progenitor cells «homing» specificity to brain tumors // Gene therapy. 2004. Vol. 11, No. 10. P. 811–818.
26. Omuro A., DeAngeles L.M. Glioblastoma and others malignant gliomas: a clinical review // JAMA. 2013. Vol. 310, No. 17. P. 1842–1850.
27. Ostrom Q.T., Gittleman H., Stetson L. [et al.] Epidemiology of gliomas // Cancer Treat. Res. 2015. No. 163. P. 1–14.
28. Rispoli R., Conti C., Celli P. [et al.] Neural stem cells and glioblastoma // Neuroradiol. J. 2014. Vol. 27, No. 2. P. 169–174.
29. Ryken T.C., Kalkanis S.N., Buatti J.M. [et al.] The role of cytoreductive surgery in the management of progressive glioblastoma: a systematic review and evidence-based clinical practice guideline // J. Neurooncol. 2014. Vol. 118, No. 3. P. 479–488.
30. Stupp R., Hegi M.E. Brain cancer in 2012: Molecular characterization leads the way // Nat. Rev. Clin. Oncol. 2013. Vol. 10, No. 2. P. 69–70.
31. Schichor C., Aibrecht V., Korte B. [et al.] Mesenchymal stem cells and glioma cells form a structural as well as a functional syncytium in vitro // Exp. Neurol. 2012. Vol. 234, No. 1. P. 208–219.
32. Shen G., Shen F., Shi Z. [et al.] Identification of cancer stem-like cells in the C6 glioma cell line and the limitation of current identification methods // In Vitro Cell. Dev. Biol. Anim. 2008. Vol. 44, No. 7. P. 280–289.
33. Wurmser A.E., Gage F.H. Cell fusion causes confusion // Nature. 2002. Vol. 6880, No. 416. P. 485–487.


Founded in 1997  |  Editions in a year: 4, Articles in one issue: 30 |  ISSN of print version: 1609-1175  |  Ind.: 18410 (Agency "Rospechat’")  |  Edition: 1000 c.