Home

Alphaherpesviruses: the modern look at the viral structure

Written by Markelova E.V., Knysh S.V., Nevezhkina T.A., Baibarina E.V.

  UDK: 616.523:575 | Pages: 5–9 | Full text PDF | Open PDF 

Annotation:

The review of publications on alphaherpesviruses, their taxonomy, morphology and life cycle is represented. Alphaherpesviruses are divided into three types that can cause anthroponous infections: herpes simplex virus types I and II, and varicella-zoster virus. Despite the common structure, diseases caused by these viruses differ in both pathogenesis and clinical manifestations. Because of complexity of vircella modeling the study of herpes simplex viruses more accessible for modeling is a significant need for scientific society.

Links to authors:

E.V. Markelova1, S.V. Knysh1, T.A. Nevezhkina1, E.V. Baibarina2
1 Pacific State Medical University (2 Ostyakova Ave. Vladovostok 690002 Russian Federation),
2 Yutskovsky’s Professorial Clinic, Ltd (3 Metallistov St. Vladivostok 690001 Russian Federation)


1. Astrelina T.A., Yakovleva M.V., Shahpazyan N.K. [et al.]. Significance of human herpesvirus detection in multipotent mesenchymal stromal stem cells for clinical practice. // Genes & Cells. 2012. No. 4. P. 68–72.
2. Lutsenko M.T., Gorikov I.N. Some data about herpes-viruses morphology and their properties // Bulletin Physiology and Pathology of Respiration. 2010. No. 38. P. 74–77.
3. Persisting viral infection / Markelova E.V., Sclyar L.F., Prosekova E.V. [et al.]. Vladivostok: Medicina DV, 2016. 160 p.
4. Сергиенко Е.Н. Современный взгляд на ветряную оспу у де тей // Медицинские новости. 2016. № 2. С. 4–8. Serhiyenka E.N. Modern view of chicken pox in children // Meditsinskie novosti. 2016. No. 2. P. 4–8.
5. Sklyar L.F., Markelova E.V., Nagornaya A.V., Sotnichenko S.A. Clinical features and the natural immunity state of the HIVinfected patients having herpes meningoencephalitis // Pacific Medical Journal. 2014. No. 1. P. 82–85.
6. Sobchak D.M., Volsky N.E., Svintsova T.A. [et al.]. Human immune system and pathogenesis characteristics of herpetic infection (review) // Modern Technologies in Medicine. 2014. No. 3. P. 118–127.
7. Totolyan G.G., Storozhakov G.I., Fedorov I.G. [et al.]. Viruses Herpes group and liver defeat // Journal of General Medicine. 2009. No. 2. P. 4–11.
8. Agostini S., Mancuso R., Bagilio F., Clerici M. A protective role for herpes simplex virus type-1-specific humoral immunity in Alzheimer's Disease // Expert. Rev. Anti. Infect. Ther. 2017. Vol. 15, No. 2. P. 89–91.
9. Albecka A., Owen D.J., Ivanova L. [et al.]. Dual function of the pUL7-pUL51 tegument protein complex in herpes simplex virus 1 infection // J. Virol. 2017. Vol. 91, No. 2. P. e02196–16.
10. Alibek K., Baiken Y., Kakpenova A. [et al.]. Implication of human herpesviruses in oncogenesis through immune evasion and suppression // Infect. Agent Cancer. 2014. Vol. 9. No. 3. doi:
10.1186/1750-9378-9-3.
11. Arvin A.M., Moffat J.F., Sommer M. [et al.]. Varicella-zoster virus T cell tropism and the pathogenesis of skin infection. // Curr. Top. Microbiol. Immunol. 2010. Vol. 342. P. 189–209.
12. Barzilai A., Zivony-Elborn I., Sarid R. [et al.]. The herpes simplex virus type 1 vhs-UL41 gene secures viral replication by temporarily evading apoptotic cellular response to infection: Vhs-UL41 activity might require interactions with elements of cellular mRNA degradation machinery // J. Virol. 2006. Vol. 80, No. 1. P. 505–513.
13. Bourgade K., Le Page A., Bocti C. [et al.]. Protective effect of amyloid-β peptides against herpes simplex virus-1 infection in a neuronal cell culture model // J. Alzheimers Dis. 2016. Vol. 50, No. 4. P. 1227–1241.
14. Bowman B.R., Baker M.L., Rixon F.J. [et al.]. Structure of the herpesvirus major capsid protein // EMBO J. 2003. Vol. 22, No. 4. P. 757–765.
15. Breuer J., Grose C., Norberg P. [et al.]. A proposal for a common nomenclature for viral clades that form the species varicella-zoster virus: Summary of VZV Nomenclature Meeting 2008, Barts and the London School of Medicine and Dentistry, 24–25 July 2008 // J. Gen. Virol. 2010. Vol. 91, No. 4. P. 821–828.
16. Brown J.C., Newcomb W.W. Herpesvirus capsid assembly: Insights from structural analysis. // Current Opinion in Virology. 2011. Vol. 1, No. 2. P. 142–149.
17. Burrel S., Ait-Arkoub Z., Voujon D. [et al.]. Molecular characterization of herpes simplex virus 2 strains by analysis of microsatellite polymorphism // J. Clin. Microbiol. 2013. Vol. 51, No. 11. P. 3616–3623.
18. Chaudhuri V., Sommer M., Rajamani J. [et al.]. Functions of varicella-zoster virus ORF23 capsid protein in viral replication and the pathogenesis of skin infection // J. Virol. 2008. Vol. 82, No. 20. P. 10231–10246.
19. Chiara G.D., Racaniello M., Mollinari C. [et al.]. Herpes simplex virus-type1 (HSV-1) impairs DNA repair in cortical neurons // Front. Aging Neurosci. 2016. Vol. 8. doi: 10.3389/fnagi.2016.00242.
20. Cohen J.I. The varicella-zoster virus genome // Curr. Top. Microbiol. Immunol. 2010. Vol. 342. P. 1–14.
21. Dolan A., Jamieson F.E., Cunningham C. [et al.]. The genome sequence of herpes simplex virus type 2 // J. Virol. 1998. Vol. 72, No. 3. P. 2010–2021.
22. Ecker J.R., Hyman R.W. Varicella zoster virus DNA exists as two isomers // Proc. Natl. Acad. Sci. USA. 1982. Vol. 79, No. 1. P. 156–160.
23. Grahn A., Studahl M., Nilsson S. [et al.]. Varicella-zoster virus (VZV) glycoprotein E is a serological antigen for detection of intrathecal antibodies to VZV in central nervous system infections, without cross-reaction to herpes simplex virus 1 // Clinical and Vaccine Immunology. 2011. Vol. 8, No. 18. P. 1336–1342.
24. Grundhoff A., Sullivan C.S. Virus-encoded microRNAs // Virology. 2011. Vol. 411, No. 2. P. 325–343.
25. Han Z., Liu X., Chen X. [et al.]. miR-H28 and miR-H29 expressed late in productive infection are exported and restrict HSV-1 replication and spread in recipient cells // Proc. Natl. Acad. Sci. USA. 2016. Vol. 113, No. 7. P. 894–901.
26. Huet A., Makhov A.M., Huffman J.B. [et al.]. Extensive subunit contacts underpin herpesvirus capsid stability and interior-toexterior allostery // Nat. Struct. Mol. Biol. 2016. Vol. 23, No. 6. P. 531–539.
27. Human herpesviruses: Biology, therapy, and immunoprophylaxis / Ed. by Arvin A., Campadelli-Flume G., Mocarski E. [et al.]. Cambridge: Cambridge University Press, 2007. 1431 p.
28. Itzhaki R.F. Herpes simplex virus type 1 and Alzheimer’s disease: Possible mechanisms and signposts // FASEB Journal. 2017. Vol. 8, No. 31. P. 3216–3226.
29. Itzhaki R.F., Lathe R., Balin B.J. [et al.]. Microbes and Alzheimer’s disease // J. Alzheimers Dis. 2016. Vol. 51, No. 4. P. 979–984.
30. Kharkwal H., Smith C.G., Wilson D.W. Herpes simplex virus capsid localization to ESCRT-VPS4 complexes in the presence and absence of the large tegument protein UL36p // J. Virol. 2016. Vol. 90, No. 16. P. 7257–7267.
31. Kingchington P.R., St Leger A.J., Guedon J-M.G., Hendricks R.L. Herpes simplex virus and varicella zoster virus, the house guests who never leave // Herpesviridae. 2012. Vol. 3. No. 5. doi:
10.1186/2042-4280-3-5.
32. Kukhanova M.K., Korovina A.N., Kochetkov S.N. Human herpes simplex virus: Life cycle and development of inhibitors. // Biochemistry (Moscow). 2015. Vol. 79, No. 13. P. 1635–1652.
33. Laine R.F., Albecka A., van de Linde S. [et al.]. Structural analysis of herpes simplex virus by optical super-resolution imaging // Nat. Commun. 2015. Vol. 6. Article No. 5980. doi: 10.1038/ ncomms6980.
34. Le Goaster J., Bouree P., El Sissy F.N. [et al.]. HSV-1/HSV-2 infection-related cancers in Bantu populations driving HIV-1 prevalence in Africa: Tracking the origin of AIDS at the onset of the 20th century. // Case Rep. Oncol. 2016. Vol. 9, No. 3. P. 815–825.
35. Licastro F., Porcellini E. Persistent infections, immune-senescence and Alzheimer’s disease // Oncoscience. 2016. Vol. 3, No. 5–6. P. 135–142.
36. Marcus A., Golani L., Ojha N.K. [et al.]. Varicella-zoster virus expresses multiple small noncoding RNAs // Journal of Virology. 2017. Vol. 24, No. 91. P. 894–901.
37. Mingo R.M., Han J., Newcomb W.W., Brown J.C. Replication of herpes simplex virus: egress of progeny virus at specialized cell membrane sites // J. Virol. 2012. Vol. 86, No. 13. P. 7084–7097.
38. Mori I., Nishiyama Y. Herpes simplex and varicella-zoster virus: why do these human alphaperpesviruses behave so differently from one another? // Rev. Med. Virol. 2005. Vol. 15, No. 6. P. 393–406.
39. Munawwar A., Singh S. Human herpesviruses as copathogens of HIV infection, their role in HIV transmission, and disease progression // J. Lab. Physicians. 2016. Vol. 8, No. 1. P. 5–18.
40. Piedade D., Azevedo-Pereira J.M. The role of microRNAs in the pathogenesis of herpesvirus infection // Viruses. 2016. Vol. 8, No. 6. P. 1–32.
41. Radtke K., Kieneke D., Wolfstein A. [et al.]. Plus- and minusend directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures // PLoS Pathog. 2010. Vol. 6. No. 7. doi: 10.1371/journal. ppat.1000991.
42. Rekabdar E., Tunback P., Liljeqvist J.-A. [et al.]. Dichotomy of glycoprotein G gene in herpes simplex virus type 1 isolates // J. Clin. Microbiol. 2002. Vol 40, No. 9. P. 3245–3251.
43. Runthala A., Singh A.K. Tegument based in-silico drug targeting of herpes simplex virus-1 // Saratov Journal of Medical Scientific Research. 2010. Vol. 2, No. 6. P. 353–357.
44. Sadzot-Delvaux C., Rentier B. The role of varicella zoster virus immediate-early proteins in latency and their potential use as components of vaccines // Arch. Virol. Suppl. 2001. No. 17. P. 81–89.
45. Scrima N., Lepault J., Boulard Y. [et al.]. Insights into herpesvirus tegument organization from structural analyses of the 970 central residues of HSV-1 UL36 protein // J. Biol. Chem. 2015. Vol. 290, No. 14. P. 8820–8833.
46. Szpara M.L., Gatherer D., Ochoa A. [et al.]. Evolution and diversity in human herpes simplex virus genomes // J. Virol. 2014. Vol. 88, No. 2. P. 1209–1227.
47. Thienkrua W., Todd C.S., Chonwattana W. [et al.]. Incidence of and temporal relationships between HIV, herpes simplex II virus, and syphilis among men who have sex with men in Bangkok, Thailand: An observational cohort // BMC Infectious Diseases. 2016. Vol. 16. P. 340–350.
48. Tomishima M. J., Smith G.A., Enquist L.W. Sorting and transport of alpha herpesviruses in axons // Traffic. 2011. Vol. 2, No. 7. P. 429–436.
49. Wang K., Goodman K.N., Li D.Y. [et al.]. A herpes simplex virus 2 (HSV-2) gD mutant impaired for neural tropism is superior to an HSV-2 gD subunit vaccine to protect animals from challenge with HSV-2 // J. Virol. 2016. Vol. 90, No. 1. P. 562–574.
50. Yun S.J., Jeong P., Kanq H.W. [et al.]. Increased expression of herpes virus-encoded hsv1-miR-H18 and hsv2-miR-H9-5p in cancer-containing prostate tissue compared to that in benign prostate hyperplasia tissue // Int. Neurourol. J. 2016. Vol. 20, No. 2. P. 122–130.
51. Zerboni L. Sen L., Oliver S.L., Arvim A.M. Molecular mechanisms of varicella zoster virus pathogenesis // Nat. Rev. Microbiol. 2014. Vol. 12, No. 3. P. 197–210.
52. Zhang D., Su C., Zheng C. Herpes simplex virus 1 serine protease VP24 blocks the DNA-sensing signal pathway by abrogating activation of interferon regulatory factor 3 // J. Virol. 2016. Vol. 90, No. 12. P. 5824–5829.

PUBLISHER: "MEDITSYNA DV"

Founded in 1997  |  Editions in a year: 4, Articles in one issue: 30 |  ISSN of print version: 1609-1175  |  Ind.: 18410 (Agency "Rospechat’")  |  Edition: 1000 c.