Стволовые клетки нейронального происхождения в мозге млекопитающих
Индекс УДК: 611.018.82:576.3 | Страницы: 60–65 | Полный текст | Скачать PDF
Аннотация:
В последние 15 лет получены новые знания о стволовых клетках, позволяющие по‑новому понять функционирование нервной ткани в норме и патологии. Показано, что пролиферирующие стволовые клетки в дефинитивном мозге при определенных условиях могут участвовать в репаративной регенерации, замещая погибшие элементы. Установлены геномные механизмы управления пролиферацией и дифференцировкой стволовых клеток. Показано их участие в генезе злокачественных опухолей и тропизм этих клеток к опухолям. Данные факты открывают новые направления в исследовании функционирования и развития мозга. Нейтральные стволовые клетки могут быть использованы для создания новых технологий, лечения нейродегенеративных и онкологических заболеваний мозга.
Ссылки на авторов:
Ревищин А.В.
Канд. биол. наук, старший научный сотрудник лаборатории сравнительной нейробиологии позвоночных ИПЭЭ РАН; e‑mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
В.Е. Охотин, Г.В. Павлова
Институт биологии гена РАН (119334 г. Москва, ул. Вавилова, 34/5),
А.В. Ревищин
Институт проблем экологии и эволюции им. А.Н. Северцова РАН (119071 г. Москва, Ленинский пр‑т, 33)
- 1. Aboody K.S., Brown A., Rainov N.G. et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from
intracranial gliomas // Proc. Natl. Acad. Sci. USA. 2000. Vol. 97.
P. 12846–12851.
2. Aimone, J.B., Wiles, J., Gage, F.H. Potential role for adult neurogenesis in the encoding of time in new memories // Nat. Neurosci.
2006. Vol. 9. P. 723–727
3. Aleksandrova M.A., Saburina I.N., Poltavtseva R.A. et al. Behavior
of human neural progenitor cells transplanted to rat brain // Brain
Res. Dev. Brain Res. 2002. Vol. 134. P. 143–148.
4. Allport J.R., Weissleder R. Murine Lewis lung carcinoma–derived
endothelium expresses markers of endothelial activation and
requires tumor-specific extracellular matrix in vitro // Neoplasia.
2003. Vol. 5. P. 205–217.
5. Allport J.R., Shinde Patil V.R., Weissleder R. Murine neuronal
progenitor cells are preferentially recruited to tumor vasculature
via alpha4–integrin and SDF-1-alpha-dependent mechanisms //
Cancer Biol Ther. 2004. Vol. 3. P. 838–844.
6. Alonso G. NG2 proteoglycan–expressing cells of the adult rat brain:
possible involvement in the formation of glial scar astrocytes following stab wound // Glia. 2005. Vol. 49. P. 318–338
7. Altman J., Das G.D. Autoradiographic and histological evidence
of postnatal hippocampal neurogenesis in rats // J. Comp. Neurol.
1965. Vol. 124. P. 319–335
8. Belachew S., Chittajallu R., Aguirre A.A. et al. Postnatal NG2
proteoglycan–expressing progenitor cells are intrinsically multipotent and generate functional neurons // J. Cell Biol. 2003. Vol.161.
P. 169–86.
9. Belayev L., Khoutorova L., Zhao W. et al. Neuroprotective effect of darbepoetin alfa, a novel recombinant erythropoietic
protein, in focal cerebral ischemia in rats // Stroke. 2005. Vol.36.
P. 1065–1070.
10. Belmadani A., Tran P.B., Ren D., Miller R.J. Chemokines regulate
the migration of neural progenitors to sites of neuroinflammation
// J. Neurosci. 2006. Vol. 26. P. 3182–3191.
11. Bhardwaj R.D., Curtis M.A., Spalding K.L. et al. Neocortical
neurogenesis in humans is restricted to development // Proc. Natl.
Acad. Sci. USA. 2006. Vol. 103. P. 12564–12568.
12. Bjorklund L.M., Sanchez-Pernaute R., Chung S. et al. Embryonic
stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model // Proc. Natl. Acad. Sci. USA.
2002. Vol. 99. P. 2344–2349
13. Brazelton T.R., Rossi F.M., Keshet G.I. et al. From marrow to brain:
expression of neuronal phenotypes in adult mice // Science. 2000.
Vol. 290. P. 1775–1779.
14. Brustle O., Jones K.N., Learish R.D. et al. Embryonic stem cell–
derived glial precursors: a source of myelinating transplants //
Science. 1999. Vol. 285. P. 754–756.
15. Chen X., Fang H., Schwob J. EMultipotency of purified, transplanted globose basal cells in olfactory epithelium // J. Comp. Neurol.
2004. Vol. 469. P. 457–474.
16. Doetsch F., Garcia-Verdugo J.M., Alvarez-Buylla A. Regeneration
of a germinal layer in the adult mammalian brain // Proc. Natl.
Acad. Sci. USA. 1999. Vol. 96. P. 11619–11624.
17. Ehrenreich H., Hasselblatt M., Dembowski C. et al. Erythropoietin
therapy for acute stroke is both safe and beneficial // Mol. Med.
2002. Vol. 8. P. 495–505.
18. Goridis C., Rohrer H. Specification of catecholaminergic and serotonergic neurons // Nat. Rev. Neurosci. 2002. Vol. 3. P. 531–541.
19. Gould E., Reeves A.J., Fallah M. et al. Hippocampal neurogenesis
in adult old world primates // Proc. Natl. Acad. Sci. USA. 1999.
Vol. 96. P. 5263–5267.
20. Gritti A., Parati E.A., Cova L. et al. Multipotential stem cells from
the adult mouse brain proliferate and self–renew in response to basic
fibroblast growth factor // J. Neurosci. 1996. Vol. 16. P. 1091–1100.
21. Gritti A., Frolichsthal-Schoeller P., Galli R., Vescovi A.L. Epidermal
and fibroblast growth factors behave as mitogenic regulators of for a
single multipotent stem–like cell population from the subventricular
region of the adult mouse forebrain // J. Neurosci. 1999. Vol. 19.
P. 3287–3297.
22. Hagell P., Cenci, M. A. Dyskinesias and dopamine cell replacement
in Parkinson›s disease: a clinical perspective // Brain Res. Bull.
2005. Vol. 68. P. 4–15.
23. Honeth G., Staflin K., Kalliomaki S., Lindvall M., Kjellman C.
Chemokine-directed migration of tumor-inhibitory neural progenitor cells towards an intracranially growing glioma // Exp. Cell Res.
2006. Vol. 312. P. 1265–1276.
24. Iacovitti L., Stull N.D., Jin H. Differentiation of human dopamine
neurons from an embryonic carcinomal stem cell line // Brain Res.
2001. Vol. 912. P. 99–104.
25. Imitola J., Raddassi K., Park K.I. et al. Directed migration of neural
stem cells to sites of CNS injury by the stromal cell–derived factor
1alpha/CXC chemokine receptor 4 pathway // Proc. Natl. Acad. Sci.
USA. 2006. Vol. 101. P. 18117–18122.
26. Lee A., Kessler J.D., Read T.A. et al. Isolation of neural stem
cells from the postnatal cerebellum // Nat. Neurosci. 2005. Vol. 8.
P. 723–729.
27. Loseva E.V. Neurotransplantation of the fetal tissue and compensatory–restorative processes in the recipient nervous system // Usp.
Fiziol. Nauk. 2001. Vol. 32. P. 19–37.
28. Magavi S.S., Leavitt B.R., Macklis J.D. Induction of neurogenesis in
the neocortex of adult mice // Nature. 2000. Vol. 405. P. 951–955.
29. Mapara K.Y., Stevenson C.B., Thompson R.C., Ehtesham M. Stem
cells as vehicles for the treatment of brain cancer // Neurosurg. Clin.
N. Am. 2007. Vol. 18. P. 71–80.
30. Marshall C.T., Lu C., Winstead W. et al. The therapeutic potential
of human olfactory–derived stem cells // Histol. Histopathol. 2006.
Vol. 21. P. 633–643.
31. Massengale M., Wagers A.J., Vogel H., Weissman I.L. Hematopoietic cells maintain hematopoietic fates upon entering the brain // J.
Exp. Med. 2005. Vol. 201. P. 1579–1589.
32. McColl S.R., Mahalingam S., Staykova M. et al. Expression of rat
I-TAC/CXCL11/SCYA11 during central nervous system inflammation: comparison with other CXCR3 ligands // Lab Invest. 2004.
Vol. 84. P. 1418–1429.
33. Mercier F., Kitasako J.T., Hatton G.I. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage
network // J. Comp. Neurol. 2002. Vol. 451. P. 170–188.
34. Mezey E., Key S., Vogelsang G. et al. Transplanted bone marrow
generates new neurons in human brains // Proc. Natl. Acad. Sci.
USA. 2003. Vol. 100. P. 1364–1369.
35. Ohab J.J., Fleming S., Blesch A., Carmichael S.T. A neurovascular
niche for neurogenesis after stroke // J. Neurosci. 2006. Vol. 26.
P. 13007–13016.
36. Olanow C.W., Kordower J.H., Freeman T.B. Fetal nigral transplantation as a therapy for Parkinson›s disease // Trends Neurosci.
1996. Vol. 19. P. 102–109.
37. Palmer T.D., Markakis E.A., Willhoite A.R. et al. Fibroblast growth
factor 2 activates a latent neurogenic program in neural stem cells
from diverse regions of the adult CNS // J. Neurosci. 1999. Vol. 19.
P. 8487–8497.
38. Palmer T.D., Willhoite A.R., Gage F.H. Vascular niche for adult
hippocampal neurogenesis // J. Comp. Neurol. 2000. Vol. 425.
P. 479–494.
39. Parker M.A., Anderson J.K., Corliss D.A. et al. Expression profile
of an operationally–defined neural stem cell clone // Exp. Neurol.
2005. Vol. 194. P. 320–332.
40. Poltavtseva R.A., Marey M.V., Aleksandrova M.A. et al. Evaluation
of progenitor cell cultures from human embryos for neurotransplantation // Brain Res. Dev. Brain Res. 2002. Vol. 134. P. 149–154.
41. Potten C.S., Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls
and uncertainties. Lessons for and from the crypt // Development.
1990. Vol. 110. P. 1001–1020.
42. Revishchin A.V., Aleksandrova M.A., Podgornyi O.V. et al. Human
fetal neural stem cells in rat brain: effects of preculturing and transplantation // Bull. Exp. Biol. Med. 2005. Vol. 139. P. 213–216.
43. Reynolds B.A., Weiss S. Generation of neurons and astrocytes from
isolated cells of the adult mammalian central nervous system //
Science. 1992. Vol. 255. P. 1707–1710.
44. Robin A.M., Zhang Z.G., Wang L. et al. Stromal cell–derived factor
1alpha mediates neural progenitor cell motility after focal cerebral
ischemia // J. Cereb. Blood Flow Metab. 2006. Vol. 26. P. 125–134.
45. Roybon L., Ma Z., Asztely F. et al. Failure of transdifferentiation
of adult hematopoietic stem cells into neurons // Stem Cells. 2006.
Vol. 24. P. 1594–1604.
46. Sawamoto K., Nakao N., Kobayashi K. et al. Visualization, direct
isolation, and transplantation of midbrain dopaminergic neurons
// Proc. Natl. Acad. Sci. USA. 2001. Vol. 98. P. 6423–6428.
47. Scintu F., Reali C., Pillai R. et al. Differentiation of human bone
marrow stem cells into cells with a neural phenotype: diverse effects
of two specific treatments // BMC Neurosci. 2006. Vol. 7. P. 14.
48. Suslov O.N., Kukekov V.G., Ignatova T.N., Steindler D.A. Neural
stem cell heterogeneity demonstrated by molecular phenotyping of
clonal neurospheres // Proc. Natl. Acad. Sci. USA. 2002. Vol. 99.
P. 14506–14511.
49. Tremain N., Korkko J., Ibberson D. et al. MicroSAGE analysis of
2,353 expressed genes in a single cell–derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple
cell lineages // Stem Cells. 2001. Vol. 19. P. 408–418.
50. Vescovi A.L., Parati E.A., Gritti A. et al. Isolation and cloning of
multipotential stem cells from the embryonic human CNS and
establishment of transplantable human neural stem cell lines by
epigenetic stimulation // Exp. Neurol. 1999. Vol. 156. P. 71–83.
51. Vitry S., Bertrand J.Y., Cumano A., Dubois-Dalcq M. Primordial hematopoietic stem cells generate microglia but not myelin–
forming cells in a neural environment // J. Neurosci. 2003. Vol. 23.
P. 10724–10731.
52. Wang L., Zhang Z., Wang Y. et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats // Stroke. 2004. Vol. 35. P. 1732–1737.
53. Watt F.M., Hogan B.L. Out of eden: stem cells and their niches //
Science. 2004. Vol. 287. P. 1427–1430.
54. Woodbury D., Reynolds K., Black I.B. Adult bone marrow stromal
stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis // J. Neurosci. 2002. Vol. 69.
P. 908–917.
55. Yip S., Aboody K.S., Burns M. et al. Neural stem cell biology may
be well suited for improving brain tumor therapies // Cancer. 2003.
Vol. 9. P. 189–204.