Home

Биомаркеры и участники ремоделирования субхондральной кости при остеоартрозе

Автор: Кабалык М.А.

  Индекс УДК: 616.72-018.3-002-07:612.018 | Страницы: 37–41 | Полный текст статьи. PDF файл | Скачать PDF 

Аннотация:

Остеоартроз (ОА) – наиболее распространенное и социально значимое заболевание опорно-двигательного аппара та, основной проблемой лечения которого является отсутствие диагностических и прогностических маркеров ранних стадий заболевания. Цель этого обзора – анализ данных о биомаркерах деградации субхондральной кости при ОА. Рас сматриваются субфенотипические молекулы – холекальциферол и паратиреоидный гормон, а также биологические субстанции, образующиеся остеобластами на разных стадиях костной дифференцировки. Обзор литературы позволяет предположить важное диагностическое значение при ОА целого ряда биологических субстанций, среди которых на ибольший интерес представляют остеокальцин, кальцитонин, продукты деградации фибриллярных белков костного и хрящевого матрикса, холекальциферол. Перспективным видится исследование диагностической значимости опи санных биологических маркеров, что в значительной степени будет способствовать расширению диагностического и прогностического инструментария и поможет более подробно оценивать неоднородную популяцию больных ОА.

Ссылки на авторов:

М.А. Кабалык
Тихоокеанский государственный медицинский университет (690950, г. Владивосток, пр-т Острякова, 2)
Кабалык Максим Александрович – канд. мед. наук, ассистент кафедры факультетской терапии и пропедевтики внутренних болезней ТГМУ; e-mail.: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.


1. Алексеева Л.И., Цветкова Е.С. Остеоартроз: из прошло го в будущее // Научно-практическая ревматология. 2009. Прил. 2. С. 31–37.
2. Дубиков А.И., Кабалык М.А., Петрикеева Т.Ю. [и др.]. Фено мен микрокристаллизации хряща при коксартрозе и асеп тическом некрозе головки бедренной кости // Научно-пра ктическая ревматология. 2012. № 5. С. 37–41.
3. Кабалык М.А., Дубиков А.И., Петрикеева Т.Ю. [и др.]. Фе номен микрокристаллического стресса при остеоартрозе // Тихоокеанский медицинский журнал. 2014. № 1. С. 70–74.
4. Agnello K.A., Trumble T.N., Chambers J.N. [et al.]. Effects of zoledronate on markers of bone metabolism and subchondral bone mineral density in dogs with experimentally induced cruciate-deficient osteoarthritis // Am. J. Vet. Res. 2005. Vol. 66, No. 9. P. 1487–1495.
5. Austin L.A, Heath H. Calcitonin: physiology and pathophysiology // N. Engl. J. Med. 1981. Vol. 304. No. 5. P. 269–278.
6. Bellido M., Lugo L., Roman-Blas J.A. [et al.]. Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis // Arthritis Res. Ther. 2010. Vol. 12, No. 4. P. 152.
7. Bouvard B., Abed E., Yéléhé-Okouma M. [et al.] Hypoxia and vitamin D differently contribute to leptin and dickkopf-related protein 2 production in human osteoarthritic subchondral bone osteoblasts // Arthritis Res. Ther. 2014. Vol. 16, No. 5. P. 459.
8. Burch W.M. Calcitonin stimulates growth and maturation of embryonic chick pelvic cartilage in vitro // Endocrinology. 1984. Vol. 114, No. 4. P. 1196–1202.
9. Cantatore F.P., Corrado A., Grano M. [et al.]. Osteocalcin synthesis by human osteoblasts from normal and osteoarthritic bone after vitamin D₃ stimulation // Clin. Rheumatol. 2004. Vol. 23, No. 6. P. 490–495.
10. Cheng T., Zhang L., Fu X. [et al.]. The potential protective effects of calcitonin involved in coordinating chondrocyte response, extracellular matrix, and subchondral trabecular bone in experimental osteoarthritis // Connect Tissue Res. 2013. Vol. 54, No. 2. P. 139–146.
11. Davis C.R., Karl J., Granell R. [et al.]. Can biochemical markers serve as surrogates for imaging in knee osteoarthritis? // Arthritis. Rheum. 2005. No. 56. P. 4038–4047.
12. Du G., Zhan H., Ding D. [et al.]. Abnormal mechanical loading induces cartilage degeneration by accelerating meniscus hypertrophy and mineralization after ACL injuries in vivo // Am. J. Sports Med. 2016. Vol. 44, No. 3. P. 652–663.
13. Fu X., Wang W., Zhang L. Progress of parathyroid hormone and parathyroid hormone-related protein on normal and osteoarthritis cartilages // Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2011. Vol. 25, No. 3. P. 299–302.
14. Garnero P., Rousseau J.C., Delmas P.D. Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases // Arthritis Rheum. 2000. No. 43. P. 953–968.
15. Grethen E., McClintock R., Gupta C.E. [et al.]. Vitamin D and hyperparathyroidism in obesity // J. Clin. Endocrinol Metab. 2011. Vol. 96, No. 5. P. 1320–1326.
16. Hessle L., Johnson K.A., Anderson H.C. [et al.]. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization // Proc. Natl. Acad. Sci. USA. 2002. Vol. 999, No. 14. P. 9445–9449.
17. Hilal G., Martel-Pelletier J., Pelletier J.P. [et al.]. Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis // Arthritis Rheum. 1998. Vol. 41, No. 5. P. 891–899.
18. Hilal G., Massicotte F., Martel-Pelletier J. [et al.]. Endogenous prostaglandin E2 and insulin-like growth factor 1 can modulate the levels of parathyroid hormone receptor in human osteoarthritic osteoblasts // J. Bone Miner. Res. 2001. Vol. 16, No. 4. P. 713–721.
19. Huh J.E., Seo D.M., Baek Y.H. [et al.]. Biphasic positive effect of formononetin on metabolic activity of human normal and osteoarthritic subchondral osteoblasts // Int. Immunopharmacol. 2010. Vol. 10, No. 4. P. 500–507.
20. Igarashi M., Sakamoto K., Nagaoka I. Effect of glucosamine, a therapeutic agent for osteoarthritis, on osteoblastic cell differentiation // Int. J. Mol. Med. 2011. Vol. 28, No. 3. P. 373–379.
21. Jiao K., Niu L., Xu X. [et al.]. Norepinephrine regulates condylar bone loss via comorbid factors // J. Dent. Res. 2015. Vol. 94, No. 6. P. 813–820.
22. Karsdal M.A., Byrjalsen I., Bay-Jensen AC. [et al.]. Biochemical markers identify influences on bone and cartilage degradation in osteoarthritis – the effect of sex, Kellgren-Lawrence (KL) score, body mass index (BMI), oral salmon calcitonin (sCT) treatment and diurnal variation // BMC Musculoskelet. Disord. 2010. Vol. 17, No. 11. P. 125.
23. Kudo S., Mizuta H., Takagi K., Hiraki Y. Cartilaginous repair of full-thickness articular cartilage defects is induced by the intermittent activation of PTH/PTHrP signaling // Osteoarthritis Cartilage. 2011. Vol. 19, No. 7. P. 886–894.
24. Laroche M., Nigon D., Gennero I. [et al.]. Vitamin D deficiency prediction by patient questionnaire and secondary hyperparathyroidism in a cohort of 526 healthy subjects in their fifties // Presse. Med. 2015. Vol. 44, No. 7–8. P. 283–290.
25. Lin Z., Pavlos N.J., Cake M.A. [et al.]. Evidence that human cartilage and chondrocytes do not express calcitonin receptor // Osteoarthritis Cartilage. 2008. Vol. 16, No. 4. P. 450–457.
26. Malemud C.J., Papay R.S., Hering T.M. Forskolin stimulates aggrecan gene expression in cultured bovine chondrocytes // Am. J. Ther. 1996. Vol. 3, No. 2. P. 120–128.
27. Mutabaruka M.S., Aoulad A.M., Delalandre A. [et al.]. Local leptin production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression // Arthritis Res. Ther. 2010. Vol. 12, No. 1. P. 20.
28. Nagaoka I., Igarashi M., Sakamoto K. Biological activities of glucosamine and its related substances // Adv. Food. Nutr. Res. 2012. No. 65. P. 337–352.
29. Nieden N.I., Kempka G., Ahr H.J. In vitro differentiation of embryonic stem cells into mineralized osteoblasts // Differentiation. 2003. Vol. 71, No. 1. P. 18–27.
30. Orth P., Cucchiarini M., Zurakowski D. [et al.]. Parathyroid hormone [1–34] improves articular cartilage surface architecture and integration and subchondral bone reconstitution in osteochondral defects in vivo // Osteoarthritis Cartilage. 2013. Vol. 21, No. 4. P. 614–624.
31. Papaioannou N.A., Triantafillopoulos I.K., Khaldi L. [et al.]. Effect of calcitonin in early and late stages of experimentally induced osteoarthritis. A histomorphometric study // Osteoarthritis Cartilage. 2007. Vol. 15, No. 4. P. 386–395.
32. Pérez-López F.R. Vitamin D and its implications for musculoskeletal health in women: an update // Maturitas. 2007. Vol. 58, No. 2. P. 117–137.
33. Ravn P., Hosking D., Thompson D. [et al.]. Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort study // J. Clin. Endocrinol. Metab. 1999. No. 84. P. 2363–2368.
34. Richette P., Roux C. Impact of treatments for osteoporosis on cartilage biomarkers in humans // Osteoporos. Int. 2012. No. 23, Suppl. 8. P. 877–880.
35. Sanchez C., Deberg M.A., Bellahcène A. [et al.]. Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone // Arthritis Rheum. 2008. Vol. 58, No. 2. P. 442–455.
36. Sanchez C., Deberg M.A, Piccardi N. [et al.] Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocyte // Osteoarthritis Cartilage. 2005. Vol. 13, No. 11. P. 988–997.
37. Schaller S., Henriksen K., Hoegh-Andersen P. [et al.]. In vitro, ex vivo, and in vivo methodological approaches for studying therapeutic targets of osteoporosis and degenerative joint diseases: how biomarkers can assist? // Assay. Drug. Dev. Technol. 2005. No. 3. P. 553–580.
38. Sexton P.M., Findlay D.M., Martin T.J. Calcitonin // Curr. Med. Chem. 1999. Vol. 6, No. 11. P. 1067–1093.
39. Shen M., Luo Y., Niu Y. [et al.]. 1,25(OH)2D deficiency induces temporomandibular joint osteoarthritis via secretion of senescence- associated inflammatory cytokines // Bone. 2013. Vol. 55, No. 2. P. 400–409.
40. Sondergaard B.C., Catala-Lehnen P., Huebner A.K. [et al.]. Mice over-expressing salmon calcitonin have strongly attenuated osteoarthritic histopathological changes after destabilization of the medial meniscus // Osteoarthritis Cartilage. 2012. Vol. 20, No. 2. P. 136–143.
41. Sondergaard B.C., Henriksen K., Wulf H. [et al.]. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation // Osteoarthritis Cartilage. 2006. Vol. 14. P. 738–748.
42. Streich N.A., Zimmermann D., Schmitt H., Bode G. Biochemical markers in the diagnosis of chondral defects following anterior cruciate ligament insufficiency // Int. Orthop. 2011. Vol. 35, No. 11. P. 1633–1637.
43. Yu S.P., Hunter D.J. Managing osteoarthritis // Aust. Prescr. 2015. Vol. 38, No. 4. P. 115–119.
44. Zhang F.F., Driban J.B., Lo G.H. [et al.]. Vitamin D deficiency is associated with progression of knee osteoarthritis // J. Nutr. 2014. Vol. 144, No. 12. P. 2002–2008.

ИЗДАТЕЛЬСТВО: Медицина ДВ

Год основания: 1997  |  Выпусков в год: 4, Статей в выпуске: 30  |  ISSN печатной версии: 1609-1175  |  Подписной  индекс: 18410 (Агентство “Роспечать”)  |  Тираж: 1000 экз.

 

Close Panel